معرفی شرکت ها


comet-for-mlflow-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extend MLFlow with Comet.ml
ویژگی مقدار
سیستم عامل -
نام فایل comet-for-mlflow-0.1.3
نام comet-for-mlflow
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Boris Feld
ایمیل نویسنده boris@comet.ml
آدرس صفحه اصلی https://github.com/comet-ml/comet-for-mlflow
آدرس اینترنتی https://pypi.org/project/comet-for-mlflow/
مجوز GNU General Public License v3
# Comet-For-MLFlow Extension [![image](https://img.shields.io/pypi/v/comet-for-mlflow.svg)](https://pypi.org/project/comet-for-mlflow/) [![CI Build](https://github.com/comet-ml/comet-for-mlflow/workflows/CI%20Build/badge.svg)](https://github.com/comet-ml/comet-for-mlflow/actions) [![Updates](https://pyup.io/repos/github/comet-ml/comet-for-mlflow/shield.svg)](https://pyup.io/repos/github/comet-ml/comet-for-mlflow/) The Comet-For-MLFlow extension is a CLI that maps MLFlow experiment runs to Comet experiments. This extension allows you to see your existing experiments in the Comet.ml UI which provides authenticated access to experiment results, dramatically improves the performance for high volume experiment runs, and provides richer charting and visualization options. This extension will synchronize previous MLFlow experiment runs with all runs tracked with [Comet's Python SDK with MLFlow support](https://comet.ml/docs/python-sdk/mlflow/), for deeper experiment instrumentation and improved logging, visibility, project organization and access management. The Comet-For-MLFlow Extension is available as free open-source software, released under GNU General Public License v3. The extension can be used with existing Comet.ml accounts or with a new, free Individual account. # Installation ```bash pip install comet-for-mlflow ``` If you install `comet-for-mlflow` in a different Python environment than the one you used to generate mlflow runs, please ensure that you use the same mlflow version in both environments. # Basic usage For automatically synchronizing MLFlow runs in their default storage location (`./mlruns`) with Comet.ml, run: ```bash comet_for_mlflow --api-key $COMET_API_KEY --rest-api-key $COMET_REST_API_KEY ``` If you'd like to review the mapping of MLFlow runs in their default storage location without synchronizing them with Comet.ml automatically, you can run: ```bash comet_for_mlflow --no-upload ``` After review, you can upload the mapped MLFlow runs with: ```bash comet upload /path/to/archive.zip ``` # Example ``` __ __ ___ ___ ___ __ __ ___ __ / ` / \ |\/| |__ | __ |__ / \ |__) __ |\/| | |__ | / \ | | \__, \__/ | | |___ | | \__/ | \ | | |___ | |___ \__/ |/\| Please create a free Comet account with your email. Email: kristen.stewart@example.com Please enter a username for your new account. Username: kstewart A Comet.ml account has been created for you and an email was sent to you to setup your password later. Your Comet API Key has been saved to ~/.comet.ini, it is also available on your Comet.ml dashboard. Starting Comet Extension for MLFlow Preparing data locally from: '/home/ks/project/mlruns' You will have an opportunity to review. # Preparing experiment 1/3: Default # Preparing experiment 2/3: Keras Experiment ## Preparing run 1/4 [2e02df92025044669701ed6e6dd300ca] ## Preparing run 2/4 [93fb285da7cf4c4a93e279ab7ff19fc5] ## Preparing run 3/4 [2e8a1aed22544549b2b6b6b2c5976ed9] ## Preparing run 4/4 [82f584bad7604289af61bc505935599b] # Preparing experiment 3/3: Tensorflow Keras Experiment ## Preparing run 1/2 [99550a7ce4c24677aeb6a1ae4e7444cb] ## Preparing run 2/2 [88ca5c4262f44176b576b54e0b24731a] MLFlow name: | Comet.ml name: | Prepared count: ----------------+------------------+------------------- Experiments | Projects | 3 Runs | Experiments | 6 Tags | Others | 39 Parameters | Parameters | 51 Metrics | Metrics | 60 Artifacts | Assets | 27 All prepared data has been saved to: /tmp/tmpjj74z8bf Upload prepared data to Comet.ml? [y/N] y # Start uploading data to Comet.ml 100%|███████████████████████████████████████████████████████████████████████| 6/6 [01:00<00:00, 15s/it] Explore your experiment data on Comet.ml with the following links: - https://www.comet.ml/kstewart/mlflow-default-2bacc9?loginToken=NjKgD6f9ZuZWeudP76sDPHx9j - https://www.comet.ml/kstewart/mlflow-keras-experiment-2bacc9?loginToken=NjKgD6f9ZuZWeudP76sDPHx9j - https://www.comet.ml/kstewart/mlflow-tensorflow-keras-experiment-2bacc9?loginToken=NjKgD6f9ZuZWeudP76sDPHx9j Get deeper instrumentation by adding Comet SDK to your project: https://comet.ml/docs/python-sdk/mlflow/ If you need support, you can contact us at http://chat.comet.ml/ or https://comet.ml/docs/quick-start/#getting-support ``` # Advanced use ## Importing MLFlow runs in a database store or in the MLFLow server store If your MLFlow runs are not located in the default local store (`./mlruns`), you can either set the CLI flag `--mlflow-store-uri` or the environment variable `MLFLOW_TRACKING_URI` to point to the right store. For example, with a different local store path: ```bash comet_for_mlflow --mlflow-store-uri /data/mlruns/ ``` With a SQL store: ```bash comet_for_mlflow --mlflow-store-uri sqlite:///path/to/file.db ``` Or with a MLFlow server: ```bash comet_for_mlflow --mlflow-store-uri http://localhost:5000 ``` ## Importing MLFlow artifacts stored remotely If your MLFlow runs have artifacts stored remotely (in any of supported remote artifact stores https://www.mlflow.org/docs/latest/tracking.html#artifact-stores), you need to configure your environment the same way as when you ran those experiments. For example, with a local Minio server: ```bash env MLFLOW_S3_ENDPOINT_URL=http://localhost:9001 \ AWS_ACCESS_KEY_ID=minio \ AWS_SECRET_ACCESS_KEY=minio123 \ comet_for_mlflow ``` # FAQ ## How can I configure my API Key or Rest API Key? You can either pass your Comet.ml API Key or Rest API Key as command-line flags or through the [usual configuration options](https://www.comet.ml/docs/python-sdk/advanced/#python-configuration). ## How are MLFlow experiments mapped to Comet.ml projects? Each MLFlow experiment is mapped to a unique Comet.ml project ID. This way even if you rename the Comet.ml project or the MLFlow experiment, new runs will be imported in the correct Comet.ml project. The name for newly created Comet.ml is `mlflow-$MLFLOW_EXPERIMENT_NAME`. The original MLFlow experiment name is also saved as an Other field named `mlflow.experimentName`. Below is a complete list of MLFlow experiment and run fields mapped to Comet.ml equivalent concepts: * MLFlow Experiments are mapped as Comet.ml projects * MLFlow Runs are mapped as Comet.ml experiments * MLFlow Runs fields are imported according to following table: | MLFlow Run Field | Comet.ml Experiment Field | |------------------ |--------------------------- | | File name | File name | | Tags | Others | | User | Git User + System User | | Git parent | Git parent | | Git origin | Git Origin | | Params | Params | | Metrics | Metrics | | Artifacts | Assets | ## Do I have to run this for future experiments? No, the common pattern is to import [Comet's Python SDK with MLFlow support](https://comet.ml/docs/python-sdk/mlflow/) in your MLFlow projects, which will keep all future experiment runs synchronized. # Credits This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template. Release History =============== 0.1.3 (2022-12-08) ------------------ - Fix compatibility with MLFlow v2.0.1 #3 0.1.2 (2020-03-12) ------------------ - Fix compatibility with Comet Python SDK v3.1.1. #2 - Fix support for unicode project notes in Python 2. #1 0.1.1 (2020-02-17) ------------------ - Fix package URL in metadata. 0.1.0 (2020-02-12) ------------------ - First release on PyPI.


نیازمندی

مقدار نام
- mlflow
>=3.1.1 comet-ml
- tabulate
- tqdm
- typing


زبان مورد نیاز

مقدار نام
>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.* Python


نحوه نصب


نصب پکیج whl comet-for-mlflow-0.1.3:

    pip install comet-for-mlflow-0.1.3.whl


نصب پکیج tar.gz comet-for-mlflow-0.1.3:

    pip install comet-for-mlflow-0.1.3.tar.gz