معرفی شرکت ها


column-text-format-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Unfilled description
ویژگی مقدار
سیستم عامل -
نام فایل column-text-format-0.0.2
نام column-text-format
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Clark Fitzgerald, Julian Hernandez, Shawheen Naderi
ایمیل نویسنده notsetupyet@gmail.com
آدرس صفحه اصلی http://packages.python.org/an_example_pypi_project
آدرس اینترنتی https://pypi.org/project/column-text-format/
مجوز BSD
# Search times - Searched 1 columns with 431644 rows in 0.26 seconds - Searched 2 columns with 431644 rows in 0.39 seconds - Searched 3 columns with 431644 rows in 0.51 seconds - Searched 4 columns with 431644 rows in 0.61 seconds - Searched 5 columns with 431644 rows in 0.69 seconds - Searched 6 columns with 431644 rows in 0.92 seconds - Searched 7 columns with 431644 rows in 1.04 seconds - Searched 8 columns with 431644 rows in 1.34 seconds - Searched 9 columns with 431644 rows in 1.66 seconds - Searched 10 columns with 431644 rows in 1.83 seconds - Searched 11 columns with 431644 rows in 1.96 seconds - Searched 12 columns with 431644 rows in 2.11 seconds - Searched 13 columns with 431644 rows in 2.29 seconds - Searched 14 columns with 431644 rows in 2.39 seconds - Searched 15 columns with 431644 rows in 2.47 seconds # Conversion times - name start size time - ignore_country_classification.csv 4257 0.02 - ignore_goods_classification.csv 239619 0.07 - ignore_gsquarterlySeptember20.csv 73824486 20.65 - ignore_services_classification.csv 2828 0.02 - ignore_test.csv 82533516 47.74 # End User Manual How would I like use this code? Suppose I have a table called `people` stored in CTF. TODO: Define and describe `people` table. ```bash $ cat people.csv names age Shawheen 21 Julian 20 Clark 34 ``` I want to access a column called `names` from this table. ```SQL SELECT names FROM people ``` Assume that `people` is a directory containing the CTF data. ```python import CTF names = CTF.load_column("people", "names") ``` TODO: look at `load_column`, see what the most common name is for reading / loading data. How closely can we copy `csv` from the standard library? Use case: it would be great if we could access the data as a stream, without necessarily loading everything in memory. We can get this feature by having `names` be an iterator or generator over the column values. Example processing names: ``` from Collections import Counter counts = Counter(names) ``` ## Use case 2 - column types ``` age = CTF.load_column("people", "age") ``` `age` should generate integer values corresponding to each entry of the `age` column. CTF knows that the `age` column means integer because of the metadata file in the `people` directory. TODO: link to W3 standard. ``` # User should not write this- it's just the idea we want def create_age(): for x in [21, 20, 34]: yield x age = create_age() # User can do something like this: >>> list(age) [21, 20, 34] ``` ## Use case 3 - compatibility with `csv` ``` import csv # Referring to file `people.csv` in CSV format r = csv.reader("people.csv") # Referring to directory `people` in CTF format r2 = CTF.reader("people") ``` `r2` should essentially be a drop in replacement for `r`. ``` for row in r: process(row) ``` TODO: Process a csv file using Python's `csv` package- any kind of data analysis is fine. For example, find the set of all values in one column. # Python notes I used this link for helping me construct the iterable. [Python special methods](https://levelup.gitconnected.com/python-dunder-methods-ea98ceabad15) [W3C metadata](https://www.w3.org/TR/tabular-metadata/) # Outline - Ctf modeled after csv and/or dictionary - [ ] Should Ctf be accessed with a reader like csv or through itself like a dictionary - [x] Column accessed with ["column_name"] - [ ] Can convert a csv file to ctf - [ ] Reader runs like csv reader returning iterable rows - [ ] class Row to give a guide for adding new columns using values from metadata.json - [ ] Use custom exceptions - [ ] Get type from metadata.json or autodetect ```python with Ctf.open() as ctf_file: ctf_file["column"] for row in ctf_file: print(row) ``` ```python Ctf.open() Ctf.close() ```


نحوه نصب


نصب پکیج whl column-text-format-0.0.2:

    pip install column-text-format-0.0.2.whl


نصب پکیج tar.gz column-text-format-0.0.2:

    pip install column-text-format-0.0.2.tar.gz