colt
===
[![CI Actions Status](https://github.com/altescy/colt/workflows/CI/badge.svg)](https://github.com/altescy/colt/actions?query=workflow%3ACI)
[![Pulish Actions Status](https://github.com/altescy/colt/workflows/publish/badge.svg)](https://github.com/altescy/colt/actions?query=workflow%3Apublish)
[![Python version](https://img.shields.io/pypi/pyversions/colt)](https://github.com/altescy/colt)
[![pypi version](https://img.shields.io/pypi/v/colt)](https://pypi.org/project/colt/)
[![license](https://img.shields.io/github/license/altescy/colt)](https://github.com/altescy/colt/blob/master/LICENSE)
## Quick Links
- [Installation](#Installation)
- [Basic Examples](#Examples)
- [kaggle Titanic Example](https://github.com/altescy/colt/tree/master/examples/titanic)
## Introduction
`colt` is a configuration utility for Python objects.
`colt` constructs Python objects from a configuration dict which is convertable into JSON.
(Inspired by [AllenNLP](https://github.com/allenai/allennlp))
## Installation
```
pip install colt
```
## Examples
#### Basic Usage
```python
import typing as tp
import colt
@colt.register("foo")
class Foo:
def __init__(self, message: str) -> None:
self.message = message
@colt.register("bar")
class Bar:
def __init__(self, foos: tp.List[Foo]) -> None:
self.foos = foos
if __name__ == "__main__":
config = {
"@type": "bar", # specify type name with `@type`
"foos": [
{"message": "hello"}, # type of this is inferred from type-hint
{"message": "world"},
]
}
bar = colt.build(config)
assert isinstance(bar, Bar)
print(" ".join(foo.message for foo in bar.foos))
# => "hello world"
```
#### `scikit-learn` Configuration
```python
import colt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
if __name__ == "__main__":
config = {
# import types automatically if type name is not registerd
"@type": "sklearn.ensemble.VotingClassifier",
"estimators": [
("rfc", { "@type": "sklearn.ensemble.RandomForestClassifier",
"n_estimators": 10 }),
("svc", { "@type": "sklearn.svm.SVC",
"gamma": "scale" }),
]
}
X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
model = colt.build(config)
model.fit(X_train, y_train)
valid_accuracy = model.score(X_valid, y_valid)
print(f"valid_accuracy: {valid_accuracy}")
```
### `Registrable` Class
By using the `Registrable` class, you can devide namespace into each class.
In a following example, `Foo` and `Bar` have different namespaces.
```python
import colt
class Foo(colt.Registrable):
pass
class Bar(colt.Registrable):
pass
@Foo.register("baz")
class FooBaz(Foo):
pass
@Bar.register("baz")
class BarBaz(Bar):
pass
@colt.register("my_class")
class MyClass:
def __init__(self, foo: Foo, bar: Bar):
self.foo = foo
self.bar = bar
if __name__ == "__main__":
config = {
"@type": "my_class",
"foo": {"@type": "baz"},
"bar": {"@type": "baz"}
}
obj = colt.build(config)
assert isinstance(obj.foo, FooBaz)
assert isinstance(obj.bar, BarBaz)
```