معرفی شرکت ها


colorview2d-0.6.post4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

2d color plotting tool
ویژگی مقدار
سیستم عامل -
نام فایل colorview2d-0.6.post4
نام colorview2d
نسخه کتابخانه 0.6.post4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alois Dirnaichner
ایمیل نویسنده alo.dir@gmail.com
آدرس صفحه اصلی https://github.com/Loisel/colorview2d
آدرس اینترنتی https://pypi.org/project/colorview2d/
مجوز UNKNOWN
colorview2d Readme ================== Use colorview2d to visualize and analize 2d data with (linear) axes. Features: --------- - Interactive colorbar adjustment. - Wide range of adjustable filters (mods) using routines from numpy, scipy and scikit.images: - interpolation, - Gaussian and median filters, - scale, rotate, flip, crop - thresholding to extract features, - absolute value, natural logarithm, derivation - something missing? Add a mod easily. - Plot to pdf or just use the matplotlib figure. - Annoyed of matplotlib.pyplots 2d colorplot interface? Simple and convenient plot configuration. - Adjust axis labels, their size and font as well as the plot size. - Easily adapt the colorbar to your needs. - Mass extract linetraces (to depict feature evolution). - Save cv2d config files and restore any modifications easily. - Save and load data to and from plain text files (gnplot format). Installation ------------ You can use the python package index via pip :: sudo pip2.7 install --upgrade colorview2d *Note*: If you receive a 'Could not find a version that satisfies...' error, try to upgrade pip, ``pip install --upgrade pip`` If you are considering writing your own mods then installation into the userspace is preferable (access to colorview2d/mods to place the mod file). :: pip2.7 install --user <username> --upgrade colorview2 Usage ----- I stronlgy recommend to use ipython interactive shell for this tutorial. We initialize some random data with x and y ranges: :: import numpy as np data = np.random.random((100, 100)) xrange = (0., np.random.random()) yrange = (0., np.random.random()) Obtain a :class:`colorview2d.Data` instance to initialize the :class:`colorview2d.View` object: :: import colorview2d data = colorview2d.Data(data, (yrange, xrange)) view = colorview2d.View(data) Note that the order of the ranges (y range first) is not a typo. It is reminiscent of the rows-first order of the 2d array. What is the data about? We add some labels: :: view.config['Xlabel'] = 'foo (f)' view.config['Ylabel'] = 'bar (b)' view.config['Cblabel'] = 'nicyness (n)' Let us have a look. :: view.show_plt_fig() You should see two figures opening, one containing the plot, the other two simple matplotlib slider widgets to control the colorbar interactively. We do not like the font and the ticks labels are too small :: view.config.update({'Font': 'Ubuntu', 'Fontsize': 16}) Also, the colormap, being default matplotlib's jet, is not greyscale-compatible, so we change to 'Blues' (have a look at the matplotlib documentation to get a list of colormaps). :: view.config['Colormap'] = 'Blues' Its time to plot a pdf and save the config :: view.plot_pdf('Nice_unmodified.pdf') view.save_config('Nice_unmodified.cv2d') *Note*: Have a look at the plain text ``Nice_unmodified.cv2d``. The config is just read as a dict. If you modify this file, changes get applied accordingly upon calling ``load_config`` if you do not misspell parameter names or options. If you want to reuse the config next time, just use it upon initialization of the ``view``: :: view = cv2d.View(original_data, cfgfile='Nice_unmodified.cv2d') We realize that there is some (unphysical :) noise in the data. Nicyness does not fluctuate so much along foo or bar and our cheap nice-intstrument produced some additional fluctuations. :: view.add_Smooth(1, 1) This call is a shortcut to ``view.add_mod('Smooth', (1, 1))``. Note that all mods found in the ``colorview2d/mods`` folder can be called by ``add_<Modname>(arg1, arg2, ...)``. Now we are interested more in the change of our nice landscape and not in its absolute values so we derive along the bar axis :: view.add_Derive() Have a look at the ``mods/`` folder for other mods and documentation on the arguments. It is also straightforward to create your own mod there. Just have a look at the other mods in the folder. We are interested especially in the nicyness between 0.0 and 0.1. :: view.config.update({'Cbmin':0.0, 'Cbmax':0.1}) Alternatively, just use the slider in the second matplotlib figure to control the colorbar limits. To re-use this data later (without having to invoke colorview2d again), we can store the data to a gnuplot-style plain text file. :: colorview2d.fileloaders.save_gpfile('Nice_smooth_and_derived.dat', view.data) Extending colorview2d --------------------- fileloaders ~~~~~~~~~~~ Have a look at the :class:`colorview2d.Data` definition in the :module:`colorview2d.data` module. To create ``Data`` we have to provide the 2d array and the bounds of the y and x ranges. :: data = colorview2d.Data( array, ((bottom_on_y_axis, top_on_y_axis), (left_on_x_axis, right_on_x_axis))) To save data, just use the ``Data`` attributes, e.g. :: my_array = my_view.data.zdata # 2d numpy.array my_x_range = my_view.data.x_range # 1d numpy.array (left-to-right) my_y_range = my_view.data.y_range # 1d numpy.array (bottom-to-top) mods ~~~~ If you want to apply your own modifications to the ``data``, just put a module inside the ``colorview2d/mods`` directory (or package, if you wish). The module should contain a class (with the class name becoming the name of the mod) which inherits from :class:`colorview2d.IMod` and implements the method ``do_apply(self, data, modargs)``. This method is also the right place to document your mods usage, i.e., the required arguments. The docstring of ``<Modname>.do_apply``, where ``<Modname>`` is the class's name, is displayed when you call :: help(view.add_<Modname>()) In ``do_apply(self, data, modargs)`` you can modifiy the datafile freely, there is no error-checking done on the consistency of the data (axes bounds, dimensions). Have a look at the ``mods/Derive.py`` module for a *minimal* example. To see if your mod is added successfully, have a look at ``my_view.modlist``. 6.10.2015, A. Dirnaichner


نحوه نصب


نصب پکیج whl colorview2d-0.6.post4:

    pip install colorview2d-0.6.post4.whl


نصب پکیج tar.gz colorview2d-0.6.post4:

    pip install colorview2d-0.6.post4.tar.gz