معرفی شرکت ها


collie-recs-0.6.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A PyTorch library for preparing, training, and evaluating deep learning hybrid recommender systems.
ویژگی مقدار
سیستم عامل -
نام فایل collie-recs-0.6.1
نام collie-recs
نسخه کتابخانه 0.6.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nathan Jones
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/ShopRunner/collie_recs
آدرس اینترنتی https://pypi.org/project/collie-recs/
مجوز BSD-3-Clause
# collie_recs [![PyPI version](https://badge.fury.io/py/collie-recs.svg)](https://badge.fury.io/py/collie-recs) [![versions](https://img.shields.io/pypi/pyversions/collie-recs.svg)](https://pypi.org/project/collie-recs/) [![Workflows Passing](https://github.com/ShopRunner/collie_recs/workflows/CI%2FCD/badge.svg)](https://github.com/ShopRunner/collie_recs/actions/workflows/ci.yaml) [![Documentation Status](https://readthedocs.org/projects/collie/badge/?version=latest)](https://collie.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/ShopRunner/collie_recs/branch/main/graph/badge.svg)](https://codecov.io/gh/ShopRunner/collie_recs) [![license](https://img.shields.io/badge/License-BSD--3--Clause-blue.svg)](https://github.com/ShopRunner/collie_recs/blob/main/LICENSE) Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie dog breed. Collie offers a collection of simple APIs for preparing and splitting datasets, incorporating item metadata directly into a model architecture or loss, efficiently evaluating a model's performance on the GPU, and so much more. Above all else though, Collie is built with flexibility and customization in mind, allowing for faster prototyping and experimentation. See the [documentation](https://collie.readthedocs.io/en/latest/index.html) for more details. ![](https://net-shoprunner-scratch-data-science.s3.amazonaws.com/njones/collie/collie-banner.png) > "We adopted 2 Border Collies a year ago and they are about 3 years old. They are completely obsessed with fetch and tennis balls and it's getting out of hand. They live in the fenced back yard and when anyone goes out there they instantly run around frantically looking for a tennis ball. If there is no ball they will just keep looking and will not let you pet them. When you do have a ball, they are 100% focused on it and will not notice anything else going on around them, like it's their whole world." > > -- *A Reddit thread on r/DogTraining* ## Installation ```bash pip install collie_recs ``` ## Quick Start ### Implicit Data Creating and evaluating a matrix factorization model with _implicit_ MovieLens 100K data is simple with Collie: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ShopRunner/collie_recs/blob/main/tutorials/quickstart.ipynb) ```python from collie_recs.cross_validation import stratified_split from collie_recs.interactions import Interactions from collie_recs.metrics import auc, evaluate_in_batches, mapk, mrr from collie_recs.model import MatrixFactorizationModel, CollieTrainer from collie_recs.movielens import read_movielens_df from collie_recs.utils import convert_to_implicit # read in explicit MovieLens 100K data df = read_movielens_df() # convert the data to implicit df_imp = convert_to_implicit(df) # store data as ``Interactions`` interactions = Interactions(users=df_imp['user_id'], items=df_imp['item_id'], allow_missing_ids=True) # perform a data split train, val = stratified_split(interactions) # train an implicit ``MatrixFactorization`` model model = MatrixFactorizationModel(train=train, val=val, embedding_dim=10, lr=1e-1, loss='adaptive', optimizer='adam') trainer = CollieTrainer(model, max_epochs=10) trainer.fit(model) model.eval() # evaluate the model auc_score, mrr_score, mapk_score = evaluate_in_batches(metric_list=[auc, mrr, mapk], test_interactions=val, model=model) print(f'AUC: {auc_score}') print(f'MRR: {mrr_score}') print(f'MAP@10: {mapk_score}') ``` More complicated examples of implicit pipelines can be viewed [for MovieLens 100K data here](https://github.com/ShopRunner/collie_recs/blob/main/collie_recs/movielens/run.py), [in notebooks here](https://github.com/ShopRunner/collie_recs/tree/main/tutorials), and [documentation](https://collie.readthedocs.io/en/latest/index.html) here. ### Explicit Data Collie also handles the situation when you instead have _explicit_ data, such as star ratings. Note how similar the pipeline and APIs are compared to the implicit example above: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ShopRunner/collie_recs/blob/main/tutorials/quickstart-explicit.ipynb) ```python from collie_recs.cross_validation import stratified_split from collie_recs.interactions import ExplicitInteractions from collie_recs.metrics import explicit_evaluate_in_batches from collie_recs.model import MatrixFactorizationModel, CollieTrainer from collie_recs.movielens import read_movielens_df from torchmetrics import MeanAbsoluteError, MeanSquaredError # read in explicit MovieLens 100K data df = read_movielens_df() # store data as ``Interactions`` interactions = ExplicitInteractions(users=df['user_id'], items=df['item_id'], ratings=df['rating']) # perform a data split train, val = stratified_split(interactions) # train an implicit ``MatrixFactorization`` model model = MatrixFactorizationModel(train=train, val=val, embedding_dim=10, lr=1e-2, loss='mse', optimizer='adam') trainer = CollieTrainer(model, max_epochs=10) trainer.fit(model) model.eval() # evaluate the model mae_score, mse_score = explicit_evaluate_in_batches(metric_list=[MeanAbsoluteError(), MeanSquaredError()], test_interactions=val, model=model) print(f'MAE: {mae_score}') print(f'MSE: {mse_score}') ``` ## Comparison With Other Open-Source Recommendation Libraries *On some smaller screens, you might have to scroll right to see the full table.* ➡️ | Aspect Included in Library | <a href="http://surpriselib.com" target="_blank">Surprise</a> | <a href="https://making.lyst.com/lightfm/docs/home.html" target="_blank">LightFM</a> | <a href="https://docs.fast.ai" target="_blank">FastAI</a> | <a href="https://maciejkula.github.io/spotlight/" target="_blank">Spotlight</a> | <a href="https://recbole.io" target="_blank">RecBole</a> | <a href="https://www.tensorflow.org/recommenders" target="_blank">TensorFlow Recommenders</a> | Collie | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | **Implicit data support** for when we only know when a user interacts with an item or not, not the explicit rating the user gave the item | | ✓ | | ✓ | ✓ | ✓ | ✓ | | **Explicit data support** for when we know the explicit rating the user gave the item | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | Support for **side-data** incorporated directly into the models | | | | | ✓ | ✓ | ✓ | | Support a **flexible framework for new model architectures** and experimentation | | | ✓ | ✓ | ✓ | ✓ | ✓ | | **Deep learning** libraries utilizing speed-ups with a GPU and able to implement new, cutting-edge deep learning algorithms | | | ✓ | ✓ | ✓ | ✓ | ✓ | | **Automatic support for multi-GPU training** | | | | | | | ✓ | | **Actively supported and maintained** | ✓ | ✓ | ✓ | | ✓ | ✓ | ✓ | | **Type annotations** for classes, methods, and functions | | | | | | ✓ | ✓ | | **Scalable for larger, out-of-memory datasets** | | | | | | ✓ | ✓ | | Includes **model zoo** with two or more model architectures implemented | | | | ✓ | ✓ | | ✓ | | Includes **implicit loss functions** for training and **metric functions** for model evaluation | | ✓ | | ✓ | ✓ | | ✓ | | Includes **adaptive loss functions** for multiple negative examples | | ✓ | | ✓ | | | ✓ | | Includes **loss functions that account for side-data** | | | | | | | ✓ | The following table notes shows the results of an experiment training and evaluating recommendation models in some popular implicit recommendation model frameworks on a common [MovieLens 10M](https://grouplens.org/datasets/movielens/10m/) dataset. The data was split via a 90/5/5 stratified data split. Each model was trained for a maximum of 40 epochs using an embedding dimension of 32. For each model, we used default hyperparameters (unless otherwise noted below). | Model | MAP@10 Score | Notes | | ----- | :----------: | :---: | | Randomly initialized, untrained model | 0.0001 | | | [Logistic MF](https://implicit.readthedocs.io/en/latest/lmf.html) | 0.0128 | Using the CUDA implementation. | | [LightFM](https://making.lyst.com/lightfm/docs/home.html) with BPR Loss | 0.0180 | | | [ALS](https://implicit.readthedocs.io/en/latest/als.html) | 0.0189 | Using the CUDA implementation. | | [BPR](https://implicit.readthedocs.io/en/latest/bpr.html) | 0.0301 | Using the CUDA implementation. | | [Spotlight](https://maciejkula.github.io/spotlight/index.html) | 0.0376 | Using adaptive hinge loss. | | [LightFM](https://making.lyst.com/lightfm/docs/home.html) with WARP Loss | 0.0412 | | | Collie ``MatrixFactorizationModel`` | **0.0425** | Using a separate SGD bias optimizer. | At ShopRunner, we have found Collie models outperform comparable LightFM models with up to **64% improved MAP@10 scores**. ## Development To run locally, begin by creating a data path environment variable: ```bash # Define where on your local hard drive you want to store data. It is best if this # location is not inside the repo itself. An example is below export DATA_PATH=$HOME/data/collie_recs ``` Run development from within the Docker container: ```bash docker build -t collie_recs . # run the container in interactive mode, leaving port ``8888`` open for Jupyter docker run \ -it \ --rm \ -v "${DATA_PATH}:/data" \ -v "${PWD}:/collie_recs" \ -p 8888:8888 \ collie_recs /bin/bash ``` ### Run on a GPU: ```bash docker build -t collie_recs . # run the container in interactive mode, leaving port ``8888`` open for Jupyter docker run \ -it \ --rm \ --gpus all \ -v "${DATA_PATH}:/data" \ -v "${PWD}:/collie_recs" \ -p 8888:8888 \ collie_recs /bin/bash ``` ### Start JupyterLab To run JupyterLab, start the container and execute the following: ```bash jupyter lab --ip 0.0.0.0 --no-browser --allow-root ``` Connect to JupyterLab here: [http://localhost:8888/lab](http://localhost:8888/lab) ### Unit Tests Library unit tests in this repo are to be run in the Docker container: ```bash # execute unit tests pytest --cov-report term --cov=collie_recs ``` Note that a handful of tests require the [MovieLens 100K dataset](https://files.grouplens.org/datasets/movielens/ml-100k.zip) to be downloaded (~5MB in size), meaning that either before or during test time, there will need to be an internet connection. This dataset only needs to be downloaded a single time for use in both unit tests and tutorials. ### Docs The Collie library supports Read the Docs documentation. To compile locally, ```bash cd docs make html # open local docs open build/html/index.html ``` License ------- Copyright (c) 2021 ShopRunner, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


نیازمندی

مقدار نام
- docstring-parser
- fire
- joblib
- numpy
- pandas
>=1.0.0 pytorch-lightning
- scikit-learn
- tables
- torch
- torchmetrics
- tqdm
- flake8
- flake8-docstrings
- flake8-import-order
- ipython
- ipywidgets
>=3.0.0 jupyterlab
- matplotlib
- m2r2
- pip-tools
<4.0.0 pydocstyle
- pytest
<3.0.0 pytest-cov
- sphinx-copybutton
==0.5.2 sphinx-rtd-theme
- widgetsnbextension


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl collie-recs-0.6.1:

    pip install collie-recs-0.6.1.whl


نصب پکیج tar.gz collie-recs-0.6.1:

    pip install collie-recs-0.6.1.tar.gz