معرفی شرکت ها


colearn-0.2.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The Standalone Fetch AI Collective Learning Framework
ویژگی مقدار
سیستم عامل -
نام فایل colearn-0.2.8
نام colearn
نسخه کتابخانه 0.2.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fetch AI
ایمیل نویسنده developer@fetch.ai
آدرس صفحه اصلی https://github.com/fetchai/colearn
آدرس اینترنتی https://pypi.org/project/colearn/
مجوز -
# Welcome to the Fetch.ai Collective Learning Colearn is a library that enables privacy-preserving decentralized machine learning tasks on the [FET network](https://fetch.ai/). This blockchain-mediated collective learning system enables multiple stakeholders to build a shared machine learning model without needing to rely on a central authority. This library is currently in development. The collective learning protocol allows learners to collaborate on training a model without requiring trust between the participants. Learners vote on updates to the model, and only updates which pass the quality threshold are accepted. This makes the system robust to attempts to interfere with the model by providing bad updates. For more details on the collective learning system see [here](https://fetchai.github.io/colearn/about/) ### Current Version We have released *v0.2.8* of the Colearn Machine Learning Interface, the first version of an interface that will allow developers to prepare for future releases. Together with the interface we provide a simple backend for local experiments. This is the first backend with upcoming blockchain ledger based backends to follow. Future releases will use similar interfaces so that learners built with the current system will work on a different backend that integrates a distributed ledger and provides other improvements. The current framework will then be used mainly for model development and debugging. We invite all users to experiment with the framework, develop their own models, and provide feedback! See the most up-to-date documentation at [fetchai.github.io/colearn](https://fetchai.github.io/colearn/) or the documentation for the latest release at [docs.fetch.ai/colearn](https://docs.fetch.ai/colearn/). ## Installation Currently we only support macos and unix systems. To use the latest stable release we recommend installing the [package from PyPi](https://pypi.org/project/colearn/) To install with support for Keras and Pytorch: ```bash pip install colearn[all] ``` To install with just support for Keras or Pytorch: ```bash pip install colearn[keras] pip install colearn[pytorch] ``` ## Running the examples Examples are available in the colearn_examples module. To run the Mnist demo in Keras or Pytorch run: ```bash python -m colearn_examples.ml_interface.keras_mnist python -m colearn_examples.ml_interface.pytorch_mnist ``` - Or they can be accessed from colearn/colearn_examples by cloning the colearn repo Please note that although all the examples are always available, which you can run will depend on your installation. If you installed only `colearn[keras]` or `colearn[pytorch]` then only their respective examples will work. For more instructions see the documentation at [fetchai.github.io/colearn/installation](https://fetchai.github.io/colearn/installation/) After installation we recommend [running a demo](https://fetchai.github.io/colearn/demo/) , or seeing [the examples](https://fetchai.github.io/colearn/examples/)


نیازمندی

مقدار نام
<1.44,>=1.35 google-cloud-storage
<3.6,>=3.3 matplotlib
~=1.16.0 numpy
<1.10,>=1.7 pydantic
- click
<0.8,>=0.5 tensorflow-privacy
<1.43,>=1.35 grpcio
<1.1,>=1.0.0 opacus
<9.1.0,>=8.0.1 Pillow
~=1.5.0 torchsummary
<1.1,>=0.23 scikit-learn
<1.8,>=1.5 scipy
<1.43,>=1.35 grpcio-tools
<4.5,>=4.2 tensorflow-datasets
<0.12,>=0.8 torchvision
~=1.1.0 pandas
<1.11,>=1.7 torch
<2.8,>=2.2 tensorflow
==0.12.0 prometheus-client
- xgboost
- mkdocs
- mkdocs-macros-plugin
- mkdocs-material
- mkdocs-material-extensions
- markdown-include
<1.43,>=1.35 grpcio
<1.43,>=1.35 grpcio-tools
==0.12.0 prometheus-client
- click
<2.8,>=2.2 tensorflow
<4.5,>=4.2 tensorflow-datasets
<0.8,>=0.5 tensorflow-privacy
~=1.1.0 pandas
<1.1,>=0.23 scikit-learn
<1.1,>=1.0.0 opacus
<9.1.0,>=8.0.1 Pillow
<1.1,>=0.23 scikit-learn
<1.8,>=1.5 scipy
<1.11,>=1.7 torch
~=1.5.0 torchsummary
<0.12,>=0.8 torchvision


زبان مورد نیاز

مقدار نام
>=3.7, <3.9 Python


نحوه نصب


نصب پکیج whl colearn-0.2.8:

    pip install colearn-0.2.8.whl


نصب پکیج tar.gz colearn-0.2.8:

    pip install colearn-0.2.8.tar.gz