معرفی شرکت ها


cognitivefactory-interactive-clustering-0.5.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package used to apply NLP interactive clustering methods.
ویژگی مقدار
سیستم عامل -
نام فایل cognitivefactory-interactive-clustering-0.5.4
نام cognitivefactory-interactive-clustering
نسخه کتابخانه 0.5.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Erwan Schild <erwan.schild@e-i.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cognitivefactory-interactive-clustering/
مجوز CECILL-C
# Interactive Clustering [![ci](https://github.com/cognitivefactory/interactive-clustering/workflows/ci/badge.svg)](https://github.com/cognitivefactory/interactive-clustering/actions?query=workflow%3Aci) [![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://cognitivefactory.github.io/interactive-clustering/) [![pypi version](https://img.shields.io/pypi/v/cognitivefactory-interactive-clustering.svg)](https://pypi.org/project/cognitivefactory-interactive-clustering/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4775251.svg)](https://doi.org/10.5281/zenodo.4775251) Python package used to apply NLP interactive clustering methods. ## <a name="Description"></a> Quick description _Interactive clustering_ is a method intended to assist in the design of a training data set. This iterative process begins with an unlabeled dataset, and it uses a sequence of two substeps : 1. the user defines constraints on data sampled by the computer ; 2. the computer performs data partitioning using a constrained clustering algorithm. Thus, at each step of the process : - the user corrects the clustering of the previous steps using constraints, and - the computer offers a corrected and more relevant data partitioning for the next step. The process use severals objects : - a _constraints manager_ : its role is to manage the constraints annotated by the user and to feed back the information deduced (such as the transitivity between constraints or the situation of inconsistency) ; - a _constraints sampler_ : its role is to select the most relevant data during the annotation of constraints by the user ; - a _constrained clustering algorithm_ : its role is to partition the data while respecting the constraints provided by the user. _NB_ : - This python library does not contain integration into a graphic interface. - For more details, read the [Documentation](#Documentation) and the articles in the [References](#References) section. ## <a name="Documentation"></a> Documentation - [Main documentation](https://cognitivefactory.github.io/interactive-clustering/) ## <a name="Requirements"></a> Requirements Interactive Clustering requires Python 3.7 or above. <details> <summary>To install Python 3.7, I recommend using <a href="https://github.com/pyenv/pyenv"><code>pyenv</code></a>.</summary> ```bash # install pyenv git clone https://github.com/pyenv/pyenv ~/.pyenv # setup pyenv (you should also put these three lines in .bashrc or similar) export PATH="${HOME}/.pyenv/bin:${PATH}" export PYENV_ROOT="${HOME}/.pyenv" eval "$(pyenv init -)" # install Python 3.7 pyenv install 3.7 # make it available globally pyenv global system 3.7 ``` </details> ## <a name="Installation"></a> Installation With `pip`: ```bash # install package python3 -m pip install cognitivefactory-interactive-clustering # install spacy language model dependencies (the one you want, with version "3.1.x") python3 -m spacy download fr_core_news_md-3.1.0 --direct ``` With [`pipx`](https://github.com/pipxproject/pipx): ```bash # install pipx python3 -m pip install --user pipx # install package pipx install --python python3 cognitivefactory-interactive-clustering # install spacy language model dependencies (the one you want, with version "3.1.x") python3 -m spacy download fr_core_news_md-3.1.0 --direct ``` _NB_ : Other spaCy language models can be downloaded here : [spaCy - Models & Languages](https://spacy.io/usage/models). Use spacy version `"3.1.x"`. ## <a name="Development"></a> Development To work on this project or contribute to it, please read [the Copier PDM documentation](https://pawamoy.github.io/copier-pdm/). ### Quick setup and help Get the code and prepare the environment: ```bash git clone https://github.com/cognitivefactory/interactive-clustering/ cd interactive-clustering make setup ``` Show the help: ```bash make help # or just make ``` For more details, read the [Contributing](https://cognitivefactory.github.io/interactive-clustering/contributing/) documentation. ## <a name="References"></a> References - **Interactive Clustering**: - First presentation: `Schild, E., Durantin, G., Lamirel, J.C., & Miconi, F. (2021). Conception itérative et semi-supervisée d'assistants conversationnels par regroupement interactif des questions. In EGC 2021 - 21èmes Journées Francophones Extraction et Gestion des Connaissances. Edition RNTI. ⟨hal-03133007⟩.` - Theoretical study: `Schild, E., Durantin, G., Lamirel, J., & Miconi, F. (2022). Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering. International Journal of Data Warehousing and Mining (IJDWM), 18(2), 1-19. http://doi.org/10.4018/IJDWM.298007. ⟨hal-03648041⟩.` - Methodological discussion: `Schild, E., Durantin, G., & Lamirel, J.C. (2021). Concevoir un assistant conversationnel de manière itérative et semi-supervisée avec le clustering interactif. In Atelier - Fouille de Textes - Text Mine 2021 - En conjonction avec EGC 2021. ⟨hal-03133060⟩.` - **Constraints and Constrained Clustering**: - Constraints in clustering: `Wagstaff, K. et C. Cardie (2000). Clustering with Instance-level Constraints. Proceedings of the Seventeenth International Conference on Machine Learning, 1103–1110.` - Survey on Constrained Clustering: `Lampert, T., T.-B.-H. Dao, B. Lafabregue, N. Serrette, G. Forestier, B. Cremilleux, C. Vrain, et P. Gancarski (2018). Constrained distance based clustering for time-series : a comparative and experimental study. Data Mining and Knowledge Discovery 32(6), 1663–1707.` - KMeans Clustering: - KMeans Clustering: `MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281–297.` - Constrained _'COP'_ KMeans Clustering: `Wagstaff, K., C. Cardie, S. Rogers, et S. Schroedl (2001). Constrained K-means Clustering with Background Knowledge. International Conference on Machine Learning` - Hierarchical Clustering: - Hierarchical Clustering: `Murtagh, F. et P. Contreras (2012). Algorithms for hierarchical clustering : An overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2, 86–97.` - Constrained Hierarchical Clustering: `Davidson, I. et S. S. Ravi (2005). Agglomerative Hierarchical Clustering with Constraints : Theoretical and Empirical Results. Springer, Berlin, Heidelberg 3721, 12.` - Spectral Clustering: - Spectral Clustering: `Ng, A. Y., M. I. Jordan, et Y.Weiss (2002). On Spectral Clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, et Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press.` - Constrained _'SPEC'_ Spectral Clustering: `Kamvar, S. D., D. Klein, et C. D. Manning (2003). Spectral Learning. Proceedings of the international joint conference on artificial intelligence, 561–566.` - **Preprocessing and Vectorization**: - _spaCy_: `Honnibal, M. et I. Montani (2017). spaCy 2 : Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.` - _spaCy_ language models: `https://spacy.io/usage/models` - _NLTK_: `Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O’Reilly Media Inc.` - _NLTK_ _'SnowballStemmer'_: `https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.snowball` - _Scikit-learn_: `Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, et E. Duchesnay (2011). Scikit-learn : Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830.` - _Scikit-learn_ _'TfidfVectorizer'_: `https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html` ## <a name="How to cite"></a> How to cite `Schild, E. (2021). cognitivefactory/interactive-clustering. Zenodo. https://doi.org/10.5281/zenodo.4775251.`


نیازمندی

مقدار نام
- networkx>=2.5
- numpy>=1.19.5
- scikit-learn>=0.24.1
- scipy>=1.5.3
3. spacy>=3.1,


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl cognitivefactory-interactive-clustering-0.5.4:

    pip install cognitivefactory-interactive-clustering-0.5.4.whl


نصب پکیج tar.gz cognitivefactory-interactive-clustering-0.5.4:

    pip install cognitivefactory-interactive-clustering-0.5.4.tar.gz