# Interactive Clustering
[](https://github.com/cognitivefactory/interactive-clustering/actions?query=workflow%3Aci)
[](https://cognitivefactory.github.io/interactive-clustering/)
[](https://pypi.org/project/cognitivefactory-interactive-clustering/)
[](https://doi.org/10.5281/zenodo.4775251)
Python package used to apply NLP interactive clustering methods.
## <a name="Description"></a> Quick description
_Interactive clustering_ is a method intended to assist in the design of a training data set.
This iterative process begins with an unlabeled dataset, and it uses a sequence of two substeps :
1. the user defines constraints on data sampled by the computer ;
2. the computer performs data partitioning using a constrained clustering algorithm.
Thus, at each step of the process :
- the user corrects the clustering of the previous steps using constraints, and
- the computer offers a corrected and more relevant data partitioning for the next step.
The process use severals objects :
- a _constraints manager_ : its role is to manage the constraints annotated by the user and to feed back the information deduced (such as the transitivity between constraints or the situation of inconsistency) ;
- a _constraints sampler_ : its role is to select the most relevant data during the annotation of constraints by the user ;
- a _constrained clustering algorithm_ : its role is to partition the data while respecting the constraints provided by the user.
_NB_ :
- This python library does not contain integration into a graphic interface.
- For more details, read the [Documentation](#Documentation) and the articles in the [References](#References) section.
## <a name="Documentation"></a> Documentation
- [Main documentation](https://cognitivefactory.github.io/interactive-clustering/)
## <a name="Requirements"></a> Requirements
Interactive Clustering requires Python 3.7 or above.
<details>
<summary>To install Python 3.7, I recommend using <a href="https://github.com/pyenv/pyenv"><code>pyenv</code></a>.</summary>
```bash
# install pyenv
git clone https://github.com/pyenv/pyenv ~/.pyenv
# setup pyenv (you should also put these three lines in .bashrc or similar)
export PATH="${HOME}/.pyenv/bin:${PATH}"
export PYENV_ROOT="${HOME}/.pyenv"
eval "$(pyenv init -)"
# install Python 3.7
pyenv install 3.7
# make it available globally
pyenv global system 3.7
```
</details>
## <a name="Installation"></a> Installation
With `pip`:
```bash
# install package
python3 -m pip install cognitivefactory-interactive-clustering
# install spacy language model dependencies (the one you want, with version "3.1.x")
python3 -m spacy download fr_core_news_md-3.1.0 --direct
```
With [`pipx`](https://github.com/pipxproject/pipx):
```bash
# install pipx
python3 -m pip install --user pipx
# install package
pipx install --python python3 cognitivefactory-interactive-clustering
# install spacy language model dependencies (the one you want, with version "3.1.x")
python3 -m spacy download fr_core_news_md-3.1.0 --direct
```
_NB_ : Other spaCy language models can be downloaded here : [spaCy - Models & Languages](https://spacy.io/usage/models). Use spacy version `"3.1.x"`.
## <a name="Development"></a> Development
To work on this project or contribute to it, please read
[the Copier PDM documentation](https://pawamoy.github.io/copier-pdm/).
### Quick setup and help
Get the code and prepare the environment:
```bash
git clone https://github.com/cognitivefactory/interactive-clustering/
cd interactive-clustering
make setup
```
Show the help:
```bash
make help # or just make
```
For more details, read the [Contributing](https://cognitivefactory.github.io/interactive-clustering/contributing/) documentation.
## <a name="References"></a> References
- **Interactive Clustering**:
- First presentation: `Schild, E., Durantin, G., Lamirel, J.C., & Miconi, F. (2021). Conception itérative et semi-supervisée d'assistants conversationnels par regroupement interactif des questions. In EGC 2021 - 21èmes Journées Francophones Extraction et Gestion des Connaissances. Edition RNTI. ⟨hal-03133007⟩.`
- Theoretical study: `Schild, E., Durantin, G., Lamirel, J., & Miconi, F. (2022). Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering. International Journal of Data Warehousing and Mining (IJDWM), 18(2), 1-19. http://doi.org/10.4018/IJDWM.298007. ⟨hal-03648041⟩.`
- Methodological discussion: `Schild, E., Durantin, G., & Lamirel, J.C. (2021). Concevoir un assistant conversationnel de manière itérative et semi-supervisée avec le clustering interactif. In Atelier - Fouille de Textes - Text Mine 2021 - En conjonction avec EGC 2021. ⟨hal-03133060⟩.`
- **Constraints and Constrained Clustering**:
- Constraints in clustering: `Wagstaff, K. et C. Cardie (2000). Clustering with Instance-level Constraints. Proceedings of the Seventeenth International Conference on Machine Learning, 1103–1110.`
- Survey on Constrained Clustering: `Lampert, T., T.-B.-H. Dao, B. Lafabregue, N. Serrette, G. Forestier, B. Cremilleux, C. Vrain, et P. Gancarski (2018). Constrained distance based clustering for time-series : a comparative and experimental study. Data Mining and Knowledge Discovery 32(6), 1663–1707.`
- KMeans Clustering:
- KMeans Clustering: `MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281–297.`
- Constrained _'COP'_ KMeans Clustering: `Wagstaff, K., C. Cardie, S. Rogers, et S. Schroedl (2001). Constrained K-means Clustering with Background Knowledge. International Conference on Machine Learning`
- Hierarchical Clustering:
- Hierarchical Clustering: `Murtagh, F. et P. Contreras (2012). Algorithms for hierarchical clustering : An overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2, 86–97.`
- Constrained Hierarchical Clustering: `Davidson, I. et S. S. Ravi (2005). Agglomerative Hierarchical Clustering with Constraints : Theoretical and Empirical Results. Springer, Berlin, Heidelberg 3721, 12.`
- Spectral Clustering:
- Spectral Clustering: `Ng, A. Y., M. I. Jordan, et Y.Weiss (2002). On Spectral Clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, et Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press.`
- Constrained _'SPEC'_ Spectral Clustering: `Kamvar, S. D., D. Klein, et C. D. Manning (2003). Spectral Learning. Proceedings of the international joint conference on artificial intelligence, 561–566.`
- **Preprocessing and Vectorization**:
- _spaCy_: `Honnibal, M. et I. Montani (2017). spaCy 2 : Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.`
- _spaCy_ language models: `https://spacy.io/usage/models`
- _NLTK_: `Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O’Reilly Media Inc.`
- _NLTK_ _'SnowballStemmer'_: `https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.snowball`
- _Scikit-learn_: `Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, et E. Duchesnay (2011). Scikit-learn : Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830.`
- _Scikit-learn_ _'TfidfVectorizer'_: `https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html`
## <a name="How to cite"></a> How to cite
`Schild, E. (2021). cognitivefactory/interactive-clustering. Zenodo. https://doi.org/10.5281/zenodo.4775251.`