معرفی شرکت ها


cognitivefactory-features-maximization-metric-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Implementation of Features Maximization Metric, an unbiased metric aimed at estimate the quality of an unsupervised classification.
ویژگی مقدار
سیستم عامل -
نام فایل cognitivefactory-features-maximization-metric-0.1.1
نام cognitivefactory-features-maximization-metric
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Erwan Schild <erwan.schild@e-i.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cognitivefactory-features-maximization-metric/
مجوز CECILL-C
# Features Maximization Metric [![ci](https://github.com/cognitivefactory/features-maximization-metric/workflows/ci/badge.svg)](https://github.com/cognitivefactory/features-maximization-metric/actions?query=workflow%3Aci) [![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://cognitivefactory.github.io/features-maximization-metric/) [![pypi version](https://img.shields.io/pypi/v/cognitivefactory-features-maximization-metric.svg)](https://pypi.org/project/cognitivefactory-features-maximization-metric/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7646382.svg)](https://doi.org/10.5281/zenodo.7646382) Implementation of _Features Maximization Metric_, an unbiased metric aimed at estimate the quality of an unsupervised classification. ## <a name="Description"></a> Quick description _Features Maximization_ (`FMC`) is a features selection method described in `Lamirel J.-C., Cuxac P., Hajlaoui K., A new approach for feature selection based on quality metric, Advances in Knowledge Discovery and Management, 6 (665), Springer.` This metric is computed by applying the following steps: 1. Compute the ***Features F-Measure*** metric (based on ***Features Recall*** and ***Features Predominance*** metrics). > (a) The ***Features Recall*** `FR[f][c]` for a given class `c` and a given feature `f` is the ratio between > the sum of the vectors weights of the feature `f` for data in class `c` > and the sum of all vectors weights of feature `f` for all data. > It answers the question: "_Can the feature `f` distinguish the class `c` from other classes `c'` ?_" > (b) The ***Features Predominance*** `FP[f][c]` for a given class `c` and a given feature `f` is the ratio between > the sum of the vectors weights of the feature `f` for data in class `c` > and the sum of all vectors weights of all feature `f'` for data in class `c`. > It answers the question: "_Can the feature `f` better identify the class `c` than the other features `f'` ?_" > (c) The ***Features F-Measure*** `FM[f][c]` for a given class `c` and a given feature `f` is > the harmonic mean of the ***Features Recall*** (a) and the ***Features Predominance*** (c). > It answers the question: "_How much information does the feature `f` contain about the class `c` ?_" 2. Compute the ***Features Selection*** (based on ***F-Measure Overall Average*** comparison). > (d) The ***F-Measure Overall Average*** is the average of ***Features F-Measure*** (c) for all classes `c` and for all features `f`. > It answers the question: "_What are the mean of information contained by features in all classes ?_" > (e) A feature `f` is ***Selected*** if and only if it exist at least one class `c` for which the ***Features F-Measure*** (c) `FM[f][c]` is bigger than the ***F-Measure Overall Average*** (d). > It answers the question: "_What are the features which contain more information than the mean of information in the dataset ?_" > (f) A Feature `f` is ***Deleted*** if and only if the ***Features F-Measure*** (c) `FM[f][c]` is always lower than the ***F-Measure Overall Average*** (d) for each class `c`. > It answers the question: "_What are the features which do not contain more information than the mean of information in the dataset ?_" 3. Compute the ***Features Contrast*** and ***Features Activation*** (based on ***F-Measure Marginal Averages*** comparison). > (g) The ***F-Measure Marginal Averages*** for a given feature `f` is the average of ***Features F-Measure*** (c) for all classes `c` and for the given feature `f`. > It answers the question: "_What are the mean of information contained by the feature `f` in all classes ?_" > (h) The ***Features Contrast*** `FC[f][c]` for a given class `c` and a given selected feature `f` is the ratio between > the ***Features F-Measure*** (c) `FM[f][c]` > and the ***F-Measure Marginal Averages*** (g) for selected feature f > put to the power of an ***Amplification Factor***. > It answers the question: "_How relevant is the feature `f` to distinguish the class `c` ?_" > (i) A selected Feature `f` is ***Active*** for a given class `c` if and only if the ***Features Contrast*** (h) `FC[f][c]` is bigger than `1.0`. > It answers the question : "_For which classes a selected feature `f` is relevant ?_" This metric is an **efficient method** to: - **identify relevant features** of a dataset modelization; - **describe association** between vectors features and data classes; - **increase contrast** between data classes. ## <a name="Documentation"></a> Documentation - [Main documentation](https://cognitivefactory.github.io/features-maximization-metric/) ## <a name="Installation"></a> Installation Features Maximization Metric requires [`Python`](https://www.python.org/) 3.8 or above. To install with [`pip`](https://github.com/pypa/pip): ```bash # install package python3 -m pip install cognitivefactory-features-maximization-metric ``` To install with [`pipx`](https://github.com/pypa/pipx): ```bash # install pipx python3 -m pip install --user pipx # install package pipx install --python python3 cognitivefactory-features-maximization-metric ``` ## <a name="Development"></a> Development To work on this project or contribute to it, please read: - the [Copier PDM](https://pawamoy.github.io/copier-pdm/) template documentation ; - the [Contributing](https://cognitivefactory.github.io/features-maximization-metric/contributing/) page for environment setup and development help ; - the [Code of Conduct](https://cognitivefactory.github.io/features-maximization-metric/code_of_conduct/) page for contribution rules. ## <a name="References"></a> References - **Features Maximization Metric**: `Lamirel J.-C., Cuxac P., Hajlaoui K., A new approach for feature selection based on quality metric, Advances in Knowledge Discovery and Management, 6 (665), Springer.` - **V-Measure**: `Rosenberg, Andrew & Hirschberg, Julia. (2007). V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. 410-420.` ## <a name="How to cite"></a> How to cite `Schild, E. (2023). cognitivefactory/features-maximization-metric. Zenodo. https://doi.org/10.5281/zenodo.7646382.`


نیازمندی

مقدار نام
- numpy>=1.22.2
- scikit-learn>=0.24.1
- scipy>=1.7.3


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cognitivefactory-features-maximization-metric-0.1.1:

    pip install cognitivefactory-features-maximization-metric-0.1.1.whl


نصب پکیج tar.gz cognitivefactory-features-maximization-metric-0.1.1:

    pip install cognitivefactory-features-maximization-metric-0.1.1.tar.gz