معرفی شرکت ها


codpy-0.1.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An RKHS based module for machine learning and data mining
ویژگی مقدار
سیستم عامل -
نام فایل codpy-0.1.8
نام codpy
نسخه کتابخانه 0.1.8
نگهدارنده ['jean-marc mercier']
ایمیل نگهدارنده []
نویسنده jean-marc mercier
ایمیل نویسنده jeanmarc.mercier@gmail.com
آدرس صفحه اصلی https://github.com/johnlem/codpy_alpha
آدرس اینترنتی https://pypi.org/project/codpy/
مجوز new BSD
# Overview Codpy is a kernel based, open source software library for high performance numerical computation, relying on the [RKHS](https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space) theory. It contains a set of core tools that we use for machine Learning, statistics and numerical simulations. As a machine learning platform, it enjoys some interesting properties : * It is a numerically efficient machine learning platform. We provide benchmark tools to compare codpy to other popular machine learning platforms. * It is a white box method. Any learning machine has access to worst-error bounds computations. These allow to compute confidence levels of prediction on any test set. Moreover, reproducibility properties of kernel methods allow to fully understand and explain obtained results. * Each learning machine has access to all classical differential operators. These properties allow us to use this library with any PDE (partial differential equations) approach. * Each learning machine has access to optimal transport tools, much needed for statistics. ## Technical requirement This version of the library is CPUs based, and is tested on * windows / amd64 platforms ## Directory structure Once installed (see below), navigate to ```<path\to\python39>\Lib\site-packages\codpy```. The directory structure should be * ```codpy``` * ```docs``` * codpy-book.pdf is the codpy reference manual. * *.ipynb are jupyter notebooks to reproduce the example of codpy book. * ```com``` : low level tools and interface. * ```pred``` : Wrappers to a number of prediction machines : kernels, neural networks, and more. * ```data``` : Wrappers to data set handling * ```proj``` : some examples of applications * BTC_predictor.py : an example of time serie prediction. * clustering.py : benchmarks of clustering methods. * housing_prices.py : benchmarks for the venerable Boston house price data set. * mnist_codpy.py : benchmarks for the MNIST data set. * radon.py : an application for medical imagery. * reordering.py : illustration of optimal transport tools. * README.md : this document * __init__.py : codpy loader * include.py : called by __init__ # Installation Note: this installation process has been tested on * windows / amd64 platform ## prerequisite ### Minimum installation * [python3.9.7](https://www.python.org/ftp/python/3.9.7/python-3.9.7-amd64.exe): a valid python python3.9.7 installation. *NOTE* : Python installation differs from one machine to another. The python root folder is denoted "\<path/to/python39>" in the rest of this document. The software Everything (or another equivalent) can be of great help finding files. ### Dev installations For information, we list the softwares that we are using for our dev configuration : * [GitHub Desktop](https://desktop.github.com) * [R](https://www.r-project.org): use any CRAN mirror for download * [RStudio](https://rstudio.com): see the download link, then choose the free version * [MiKTEX](https://miktex.org): see the download tab * [Everything](https://www.voidtools.com/downloads/) * [Visual Studio Code](https://code.visualstudio.com) Those installations should be fine using the latest (64 bits) version and the default settings for each software . *Note* Once R and RStudio are installed, open the latter. In the console, enter "*install.packages("rmarkdown")*" to install [RMarkdown](https://rmarkdown.rstudio.com/index.html). ## Cloning repo Download the codpy repo at [codpy alpha](https://github.com/JohnLeM/codpy_alpha) to your location <path/to/codpyrepo> ## Installation ### prerequisite We suppose that there is a valid python installation on the host machine. The reader can * either use its main python environment ```<path/to/python39>``` * or create a virtual python environment ```<path/to/venv>```, a good practice that we describe in the rest of this section. First open a command shell ```cmd```, create a virtual environment and activate it. ``` python -m venv .\venv .\venv\Scripts\activate ``` *NOTE* : In the rest of the installation procedure, we consider a virtual environment <path/to/venv>. One can replace with <path/to/python39> if a main environment installation is desired, for dev purposes for instance. ### pip install codpy Open a command shell ```cmd```, and pip install codpy ``` pip install codpy ``` or from the local repository ``` pip install <path/to/codpyrepo>/dist/codpy-XXXX.whl ``` The installation procedure might take some minutes depending on your internet connection. ### Test codpy open a python shell and import codpy ``` python ``` ``` import codpy ``` # Testing with Visual Studio Code You can your visual studio installation. - With Visual Studio Code, open the ```<path/to/codpyrepo>``` folder and select for instance the file ```<path/to/codpyrepo>/proj/clustering.py``` - Select your python interpreter (Shift+P) - Hit F5. If everything works, you should have some figures.


نیازمندی

مقدار نام
==0.1.1 codpydll
==0.2.1 SobolSequence
==2.63.0 google-api-python-client
==4.1.3 oauth2client
==2.10.0 pybind11
==1.5.0 pandas
- tk
- numpy
==3.6.0 matplotlib
==2022.2.0 mkl
==1.1.2 scikit-learn
==1.9.1 scipy
==2.10.0 tensorflow
==0.12.0 seaborn
==0.19.3 scikit-image
==4.6.0 tensorflow-datasets
==1.12.1 torch
==1.6.2 xgboost
==1.0.0 jupyter
==1.27 quantlib
==2.0.1 xlrd
==2.3.0 pydicom
==0.1.74 yfinance
==2022.9.0 xarray
==1.5.12 kaggle
- pandera
- statsmodels


نحوه نصب


نصب پکیج whl codpy-0.1.8:

    pip install codpy-0.1.8.whl


نصب پکیج tar.gz codpy-0.1.8:

    pip install codpy-0.1.8.tar.gz