معرفی شرکت ها


cobaya-3.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Code for Bayesian Analysis
ویژگی مقدار
سیستم عامل OS Independent
نام فایل cobaya-3.2.1
نام cobaya
نسخه کتابخانه 3.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jesus Torrado and Antony Lewis
ایمیل نویسنده -
آدرس صفحه اصلی https://cobaya.readthedocs.io
آدرس اینترنتی https://pypi.org/project/cobaya/
مجوز LGPL
*Cobaya*, a code for Bayesian analysis in Cosmology =================================================== :Author: `Jesus Torrado`_ and `Antony Lewis`_ :Source: `Source code at GitHub <https://github.com/CobayaSampler/cobaya>`_ :Documentation: `Documentation at Readthedocs <https://cobaya.readthedocs.org>`_ :Licence: `LGPL <https://www.gnu.org/licenses/lgpl-3.0.en.html>`_ + mandatory bug reporting asap + mandatory `arXiv'ing <https://arxiv.org>`_ of publications using it (see `LICENCE.txt <https://github.com/CobayaSampler/cobaya/blob/master/LICENCE.txt>`_ for exceptions). The documentation is licensed under the `GFDL <https://www.gnu.org/licenses/fdl-1.3.en.html>`_. :E-mail list: https://cosmocoffee.info/cobaya/ – **sign up for important bugs and release announcements!** :Support: For general support, CosmoCoffee_; for bugs and issues, use the `issue tracker <https://github.com/CobayaSampler/cobaya/issues>`_. :Installation: ``pip install cobaya --upgrade`` (see the `installation instructions <https://cobaya.readthedocs.io/en/latest/installation.html>`_; in general do *not* clone) .. image:: https://travis-ci.com/CobayaSampler/cobaya.svg?branch=master :target: https://app.travis-ci.com/CobayaSampler/cobaya .. image:: https://img.shields.io/pypi/v/cobaya.svg?style=flat :target: https://pypi.python.org/pypi/cobaya/ .. image:: https://readthedocs.org/projects/cobaya/badge/?version=latest :target: https://cobaya.readthedocs.org/en/latest .. image:: https://codecov.io/gh/CobayaSampler/cobaya/branch/master/graphs/badge.svg :target: https://codecov.io/github/CobayaSampler/cobaya/branch/master .. image:: https://img.shields.io/badge/arXiv-2005.05290-b31b1b.svg?color=0B6523 :target: https://arxiv.org/abs/2005.05290 **Cobaya** (**co**\ de for **bay**\ esian **a**\ nalysis, and Spanish for *Guinea Pig*) is a framework for sampling and statistical modelling: it allows you to explore an arbitrary prior or posterior using a range of Monte Carlo samplers (including the advanced MCMC sampler from CosmoMC_, and the advanced nested sampler PolyChord_). The results of the sampling can be analysed with GetDist_. It supports MPI parallelization (and very soon HPC containerization with Docker/Shifter and Singularity). Its authors are `Jesus Torrado`_ and `Antony Lewis`_. Some ideas and pieces of code have been adapted from other codes (e.g CosmoMC_ by `Antony Lewis`_ and contributors, and `Monte Python`_, by `J. Lesgourgues`_ and `B. Audren`_). **Cobaya** has been conceived from the beginning to be highly and effortlessly extensible: without touching **cobaya**'s source code, you can define your own priors and likelihoods, create new parameters as functions of other parameters... Though **cobaya** is a general purpose statistical framework, it includes interfaces to cosmological *theory codes* (CAMB_ and CLASS_) and *likelihoods of cosmological experiments* (Planck, Bicep-Keck, SDSS... and more coming soon). Automatic installers are included for all those external modules. You can also use **cobaya** simply as a wrapper for cosmological models and likelihoods, and integrate it in your own sampler/pipeline. The interfaces to most cosmological likelihoods are agnostic as to which theory code is used to compute the observables, which facilitates comparison between those codes. Those interfaces are also parameter-agnostic, so using your own modified versions of theory codes and likelihoods requires no additional editing of **cobaya**'s source. How to cite us -------------- If you use **cobaya**, please cite its pre-print, `arXiv:2005.05290 <https://arxiv.org/abs/2005.05290>`_, and its ASCL record, `ascl:1910.019 <https://ascl.net/1910.019>`_. To appropriately cite the packages (samplers, theory codes, likelihoods) that you have used, simply run the script `cobaya-bib` with your input file(s) as argument(s), and you will get *bibtex* references and a short suggested text snippet for each module mentioned in your input file. You can find a usage example `here <https://cobaya.readthedocs.io/en/latest/cosmo_basic_runs.html#citations>`_. Acknowledgements ---------------- Thanks to `J. Lesgourgues`_ and `W. Handley`_ for support on interfacing CLASS_ and PolyChord_ respectively. Thanks too to `G. Cañas Herrera`_, `A. Finke`_, `X. Garrido`_, `S. Heimersheim`_, `L. Hergt`_, `C. Hill`_, `P. Lemos`_, `M.S. Madhavacheril`_, `V. Miranda`_, `T. Morton`_, `M. Rashkovetskyi`_, `J. Zunz`_ and many others for extensive and somewhat painful testing. .. _`Jesus Torrado`: https://web.physik.rwth-aachen.de/user/torrado .. _`Antony Lewis`: https://cosmologist.info .. _CosmoMC: https://cosmologist.info/cosmomc/ .. _CosmoCoffee: https://cosmocoffee.info/viewforum.php?f=11 .. _`Monte Python`: https://baudren.github.io/montepython.html .. _Camb: https://camb.info/ .. _Class: https://class-code.net/ .. _GetDist: https://github.com/cmbant/getdist .. _PolyChord: https://github.com/PolyChord/PolyChordLite .. _`J. Lesgourgues`: https://www.particle-theory.rwth-aachen.de/cms/Particle-Theory/Das-Institut/Mitarbeiter-TTK/Professoren/~gufe/Lesgourgues-Julien/?lidx=1 .. _`B. Audren`: https://baudren.github.io/ .. _`W. Handley`: https://www.kicc.cam.ac.uk/directory/wh260 .. _`G. Cañas Herrera`: https://gcanasherrera.github.io/pages/about-me.html#about-me .. _`A. Finke`: https://cosmology.unige.ch/users/andreas-finke .. _`X. Garrido`: https://xgarrido.github.io/ .. _`S. Heimersheim`: https://www.ast.cam.ac.uk/people/Stefan.Heimersheim .. _`L. Hergt`: https://www.kicc.cam.ac.uk/directory/lh561 .. _`C. Hill`: http://user.astro.columbia.edu/~jch/ .. _`P. Lemos`: https://pablo-lemos.github.io/ .. _`M.S. Madhavacheril`: https://msyriac.github.io/ .. _`V. Miranda`: https://github.com/vivianmiranda .. _`T. Morton`: https://github.com/timothydmorton .. _`M. Rashkovetskyi`: https://misharash.github.io/ .. _`J. Zunz`: https://github.com/joezuntz


زبان مورد نیاز

مقدار نام
>=3.6.1 Python


نحوه نصب


نصب پکیج whl cobaya-3.2.1:

    pip install cobaya-3.2.1.whl


نصب پکیج tar.gz cobaya-3.2.1:

    pip install cobaya-3.2.1.tar.gz