معرفی شرکت ها


cnn-raccoon-0.9.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Create interactive dashboards for your Convolutional Neural Networks (CNNs) with a single line of code!
ویژگی مقدار
سیستم عامل -
نام فایل cnn-raccoon-0.9.5
نام cnn-raccoon
نسخه کتابخانه 0.9.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Luka Anicin
ایمیل نویسنده luka.anicin@gmail.com
آدرس صفحه اصلی https://github.com/lucko515/cnn-raccoon
آدرس اینترنتی https://pypi.org/project/cnn-raccoon/
مجوز MIT
<link rel="stylesheet" type="text/css" media="all" href="images/readme.css" /> # CNN Raccoon v0.9.5 <p align="center"> <img src="https://raw.githubusercontent.com/lucko515/cnn-raccoon/master/cnn_raccoon/static/images/ui/cnn_logo.png"> </p> [![Downloads](https://pepy.tech/badge/cnn-raccoon)](https://pepy.tech/project/cnn-raccoon) <h4 style="text-align: center;">Create interactive dashboards for your Convolutional Neural Networks (CNNs) with a single line of code!</h4> --- __CNN Raccoon__ helps you with inspecting what's going on inside your Convolutional Neural Networks in a visual way that's easy to understand. Oh! Did I mention that you don't need to change your code at all? And that you can do all of this on a single line of Python code? ## How to use it? ### TensorFlow mode When using CNN Raccoon for a TensorFlow (Keras) based model, you'll implement your model in the same way as before. To load images from your dataset into CNN Raccoon, convert them to `np.array` object. Check an example below for the `CIFAR10` dataset. ```python model = tf.keras.models.Sequential([ ... ]) model.compile(...) # You define and compile model in the same way # Let's use Cifar-10 for this example, but can be any dataset from tensorflow.keras.datasets import cifar10 (X_train, y_train), (X_test, y_test) = cifar10.load_data() # CNN Raccoon magic! from cnn_raccoon import inspector # In a single line of code send your model to the Inspector inspector(model=model, images=X_train[:10], number_of_classes=10, engine="keras") ``` ![](images/kmeans-vt.gif) ### PyTorch mode If you decide to use CNN Raccoon for your PyTorch model, you'll implement your model in the same way as before. To load images from your dataset into CNN Raccoon, convert them to the `PyTorch.Variable` object. The best way to achieve this is by using PyTorch's dataset loader. Check an example below for the `CIFAR10` dataset. ```python # For PyTorch you define the model in the same way as before model = Net() # Load dataset using data loaders transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) dataiter = iter(trainloader) images, labels = dataiter.next() # CNN Raccoon magic! from cnn_raccoon import inspector # In a single line of code send your model to the Inspector inspector(model=model, images=images, number_of_classes=10, engine="keras") ``` ![](images/kmeans-vt.gif) ### Interactive network graph This library generates an interactive graph of your CNN directly in a browser. This graph allows you to click and inspect each layer inside your model. ### Weights inspector Visualization of each Convolutional filter from your network ![](images/th.gif) ### GradCam Based on the paper [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization ](https://arxiv.org/pdf/1610.02391.pdf). To learn more about GradCam and Class Activation maps I do suggest reading through [this post](https://towardsdatascience.com/interpretability-in-deep-learning-with-w-b-cam-and-gradcam-45ba5296a58a). ![](images/inter-q.png) ### Siliency Maps Based on the paper [Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps ](https://arxiv.org/pdf/1312.6034.pdf). To learn more about Saliency Maps I do suggest reading through [this post](https://analyticsindiamag.com/what-are-saliency-maps-in-deep-learning/). ![](images/sklearn.gif) ## Installation ### Installation with `pip` You can install CNN Raccoon directly from the PyPi repository using `pip` (or `pip3`): ```bash pip install cnn-raccoon ``` ### Manual installation If you prefer to install it from source: 1. Clone this repository ```bash git clone https://github.com/lucko515/cnn-raccoon ``` 2. Go to the library folder and run ```bash pip install . ``` ### Requirements #### PyTorch version Install all requirements from `requirements.txt` file `pip install -r requirements.txt` After installing base, requirements make sure you have PyTorch `>1.5.0` version. Here is the PyTorch installation guide: https://pytorch.org/get-started/locally/ #### TensorFlow version Install all requirements from `requirements.txt` file `pip install -r requirements.txt` After installing base, requirements make sure you have TensorFlow (w/ Keras API) `>2.0.0` version. Here is the TensorFlow (w/ Keras API) installation guide: https://www.tensorflow.org/install ## TODO If you want to contribute to the CNN Raccoon, here is what's on the TODO list: - [ ] Silency Map for the __TensorFlow__ mode - [ ] Make dashboard responsive on smaller screens (< 1100px) - [ ] Interactive CNN Builder - [ ] Drag n Drop network builder ## Contact Add me on [LinkedIn](https://www.linkedin.com/in/luka-anicin/)


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl cnn-raccoon-0.9.5:

    pip install cnn-raccoon-0.9.5.whl


نصب پکیج tar.gz cnn-raccoon-0.9.5:

    pip install cnn-raccoon-0.9.5.tar.gz