معرفی شرکت ها


cmqd-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python bindings for the ClearMacro API
ویژگی مقدار
سیستم عامل -
نام فایل cmqd-1.0.4
نام cmqd
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده ClearMacro
ایمیل نویسنده support@clearmacro.com
آدرس صفحه اصلی https://github.com/cmqd/cm-api-python-sdk
آدرس اینترنتی https://pypi.org/project/cmqd/
مجوز MIT
# ClearMacro <!-- omit in toc --> The ClearMacro Python library provides convenient access to the ClearMacro API from applications written in the Python language. It includes a pre-defined set of methods that make it simple to start interacting with the API. - [Installation](#installation) - [Examples](#examples) - [Full Python Docstrings](#full-python-docstrings) ## Installation To use the package, run: ```sh pip install --upgrade cmqd ``` ## Examples Selection of examples; a reference point of getting started. ``` // Instantiate a client >>> from clearmacro import Client >>> config = {'url': '<HOST HERE>', 'username': '<EMAIL HERE>', 'password': '<PASSWORD HERE>'} >>> client = Client(**config) // Get the catalogue >>> catalogue = client.get_signals_catalogue() // Consume it as a DataFrame >>> client.json_to_df(catalogue) signalId name description universe category 0 8 Crossborder Flow Crossborder Flow Economics Credit 1 9 Crossborder Private Liquidity Crossborder Private Liquidity Economics Credit 2 10 Crossborder Policy Sector Crossborder Policy Sector Economics Credit 3 11 Crossborder Monetized Savings Crossborder Monetized Savings Economics Inflation ... ``` ``` // Get the markets for which a certain signal is available. >>> markets_for_my_signal = client.get_markets_for_signal('Bond Valuation Score IHS') // Consume as DataFrame >>> client.json_to_df(markets_for_my_signal) classId name marketCategory 0 86 Australia Country 1 87 Austria Country 2 88 Belgium Country 3 89 Brazil Country 4 90 Canada Country ... ``` ``` // Request a certain signal series >>> series = client.get_signal_series(signal='Crossborder Flow', market='US', research_type='Back-test Level', last_date_only=False, start_date='2016-1-1', end_date='2020-10-16') // Consume it as a DataFrame >>> client.json_to_df(series) dateTimes values 0 2016-01-29T23:59:59.99 5.485577 1 2016-02-29T23:59:59.99 5.974441 2 2016-03-31T23:59:59.99 6.388535 3 2016-04-29T23:59:59.99 6.714286 4 2016-05-31T23:59:59.99 6.340190 5 2016-06-30T23:59:59.99 5.599369 6 2016-07-29T23:59:59.99 4.792453 7 2016-08-31T23:59:59.99 3.793103 8 2016-09-30T23:59:59.99 3.207812 9 2016-10-31T23:59:59.99 3.046729 10 2016-11-30T23:59:59.99 3.375776 11 2016-12-30T23:59:59.99 3.981424 ... // If there is no such series, get an exception which can be handled: >>> client.get_signal_series('Random signal', 'Random market', 'Random research type') ValueError: Invalid input. ``` ``` // Request data with a certain frequency e.g. weekly data on Wednesdays. >>> wedDataSeries = client.get_signal_series('Country Valuation Score TR', 'Germany', 'Back-test Momentum', frequency_key = 'W-WED') // Consume it as a DataFrame >>> client.json_to_df(wedDataSeries) dateTimes values 0 1995-02-15T23:59:59.99 4.449885 1 1995-02-22T23:59:59.99 5.507832 2 1995-03-01T23:59:59.99 5.042825 3 1995-03-08T23:59:59.99 6.214902 4 1995-03-15T23:59:59.99 6.647544 ... ``` ## Full Python Docstrings Documentation for each method of the `Client` class: ``` get_signals_catalogue() """ Function to retrieve the list of all signals. Returns: JSON list of signal objects. """ ``` ``` get_all_markets() """ Function to retrieve the list of all markets. Returns: JSON list of market objects. """ ``` ``` get_signal_universes() """ Function to retrieve the signal universes. Returns: JSON list of universe objects. """ ``` ``` get_categories_for_universe(universe: str) """ Function to retrieve the list of categories corresponding to the passed universe. Args: universe (str): One of the signal universes. Available options are the "name" fields from the list of universe objects obtained by calling the get_signal_universes method. Returns: JSON list of category objects. """ ``` ``` get_categories_for_universe_id(universe_id: int) """ Function to retrieve the list of categories corresponding to the passed universe id. Args: universe_id (int): One of the signal universes. Available options are the "universeId" fields from the list of universe objects obtained by calling the get_signal_universes method. Returns: JSON list of category objects. """ ``` ``` get_signals_for_universe_cat_pair(universe: str, category: str) """ Function to retrieve all signals belonging to the given universe, category pair. Args: universe (str): One of the signal universes. Available options are the "name" fields from the list of universe objects obtained by calling the get_signal_universes method. category (str): One of the categories of the above universe. Available options are the "name" fields from the list of category objects obtained by calling get_categories_for_universe(universe). Returns: JSON list of signal objects. """ ``` ``` get_signals_for_universe_cat_pair_id(universe_id: int, category_id: int) """ Function to retrieve all signals belonging to the given universe, category pair by id. Args: universe_id (int): One of the signal universes. Available options are the "universeId" fields from the list of universe objects obtained by calling the get_signal_universes method. category_id (int): One of the categories of the above universe. Available options are the "categoryId" fields from the list of category objects obtained by calling get_categories_for_universe_id(universe_id). Returns: JSON list of signal objects. """ ``` ``` get_market_categories() """ Function to retrieve the list of all market categories. Returns: JSON list of market category objects. """ ``` ``` get_markets_for_market_cat(market_category: str) """ Function to retrieve the list of markets corresponding to the passed market category. Args: market_category (str): One of the market categories. Available options are the "name" fields from the list of market category objects obtained by calling the get_market_categories method. Returns: JSON list of market objects. """ ``` ``` get_markets_for_market_cat_id(market_category_id: int) """ Function to retrieve the list of markets corresponding to the passed market category id. Args: market_category_id (int): One of the market categories. Available options are the "marketCategoryId" fields from the list of market category objects obtained by calling the get_market_categories method. Returns: JSON list of market objects. """ ``` ``` get_markets_for_signal(signal: str) """ Function to retrieve the list of markets corresponding to the passed signal. Args: signal (str): One of the signals. Available options are the "name" fields from the list of signals objects obtained by calling the get_signals_catalogue method. Returns: JSON list of market objects. """ ``` ``` get_markets_for_signal_id(signal_id: int) """ Function to retrieve the list of markets corresponding to the passed signal id. Args: signal_id (int): One of the signals. Available options are the "signalId" fields from the list of signals objects obtained by calling the get_signals_catalogue method. Returns: JSON list of market objects. """ ``` ``` get_signals_for_market(market: str) """ Function to retrieve the list of signals available for the given market. Args: market (str): One of the valid markets. Available options are the "name" fields from the list of market objects obtained by calling the get_all_markets method. Returns: JSON list of signal objects. """ ``` ``` get_signals_for_market_id(class_id: int) """ Function to retrieve the list of signals available for the given market. Args: class_id (int): One of the valid markets. Available options are the "classId" fields from the list of market objects obtained by calling the get_all_markets method. Returns: JSON list of signal objects. """ ``` ``` get_research_types_for_signal_market_pair(signal: str, market: str) """ Function to retrieve the list of research types corresponding to the passed signal and market. Args: signal (str): One of the signals. Available options are the "name" fields from the list of signal objects obtained by calling the get_signals_catalogue method. market (str): One of the valid markets for the above signal. Available options are the "name" fields from the list of market objects obtained by calling the get_markets_for_signal(signal) method. Returns: JSON list of research type objects. """ ``` ``` get_research_types_for_signal_market_pair_id(signal_id: int, market_id: int) """ Function to retrieve the list of research types corresponding to the passed signal id and market id. Args: signal_id (int): One of the signals. Available options are the "signalId" fields from the list of signal objects obtained by calling the get_signals_catalogue method. market_id (int): One of the valid markets for the above signal. Available options are the "classId" fields from the list of market objects obtained by calling the get_markets_for_signal_id(signal_id) method. Returns: JSON list of research type objects. """ ``` ``` get_signal_series( signal: str, market: str, research_type: str, last_date_only=False, start_date=None, end_date=None, frequency_key=None, ) """ Function to retrieve a signal time series. Args: signal (str): Options are "name" fields from list of signal objects returned by get_signals_catalogue. market (str): Options are "name" fields from list of market objects returned by get_markets_for_signal(signal). research_type (str): Options are "name" fields from list of research type objects returned by get_research_types_for_signal_market_pair(signal, market). last_date_only (bool, optional): Flag indicating if only the last date of the time series is desired. start_date (str, optional): Start date of the series in ISO format YYYY-MM-DD. end_date (str, optional): End date of the series in ISO format YYYY-MM-DD. frequency_key (str): One of the desired frequencies (None is for all values available, undetermined frequency): D, (Daily - all days) WD, (Weekdays) W_MON, (Weekly data on Mondays) W_TUE, (Weekly data on Tuesdays) W_WED, (Weekly data on Wednesdays) W_THU, (Weekly data on Thursdays) W_FRI, (Weekly data on Fridays) W_SAT, (Weekly data on Saturdays) W_SUN, (Weekly data on Sundays) M, (Monthly data - end of month) MS, (Monthly data - start of month) Q, (Quarterly data - end of quarter) QS (Quarterly data - start of quarter) Examples: >>> client.get_signal_series('Crossborder Flow', 'US', 'Back-test Level', last_date_only=False, start_date='2016-1-1', end_date='2020-10-16') Returns: Time series object. """ ``` ``` get_signal_series_id( signal_id: int, market_id: int, research_type_id: int, last_date_only=False, start_date=None, end_date=None, frequency_key=None ) """ Function to retrieve a signal time series by ids. Args: signal_id (int): Options are "signalId" fields from list of signal objects returned by get_signals_catalogue. market_id (int): Options are "classId" fields from list of market objects returned by get_markets_for_signal_id(signal_id). research_type_id (int): Options are "researchTypeId" fields from list of research type objects returned by get_research_types_for_signal_market_pair_id(signal_id, market_id). last_date_only (bool): Flag indicating if only the last date of the time series is desired. start_date (str): Start date of the series in ISO format YYYY-MM-DD. end_date (str): End date of the series in ISO format YYYY-MM-DD. frequency_key (str): One of the desired frequencies (None is for all values available, undetermined frequency): D, (Daily - all days) WD, (Weekdays) W_MON, (Weekly data on Mondays) W_TUE, (Weekly data on Tuesdays) W_WED, (Weekly data on Wednesdays) W_THU, (Weekly data on Thursdays) W_FRI, (Weekly data on Fridays) W_SAT, (Weekly data on Saturdays) W_SUN, (Weekly data on Sundays) M, (Monthly data - end of month) MS, (Monthly data - start of month) Q, (Quarterly data - end of quarter) QS (Quarterly data - start of quarter) Examples: >>> client.get_signal_series_id(8, 137, 94, last_date_only=False, start_date='2016-1-1', end_date='2020-10-16') Returns: Time series object. """ ``` ``` json_to_df(json) """ Function to convert JSON/JSON list to a pandas.DataFrame object. Args: json: The JSON to be converted - this is the format all methods return. Returns: The data contained in the JSON cast as a DataFrame. If the data is a time series, the dataframe will be indexed by datetimes and there will be a 'values' column containing the value corresponding to each DateTimeIndex. """ ```


نیازمندی

مقدار نام
>=2.20 requests[security]
>=1.7.1 pyjwt
>=2.20 requests
>=1.1.3 pandas


نحوه نصب


نصب پکیج whl cmqd-1.0.4:

    pip install cmqd-1.0.4.whl


نصب پکیج tar.gz cmqd-1.0.4:

    pip install cmqd-1.0.4.tar.gz