معرفی شرکت ها


cmdbtools-1.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

cmdbtools: A command line tools for CMDB variant browser.
ویژگی مقدار
سیستم عامل -
نام فایل cmdbtools-1.1.3
نام cmdbtools
نسخه کتابخانه 1.1.3
نگهدارنده ['Shujia Huang']
ایمیل نگهدارنده ['huangshujia9@gmail.com']
نویسنده Shujia Huang
ایمیل نویسنده huangshujia9@gmail.com
آدرس صفحه اصلی https://github.com/ShujiaHuang/cmdbtools
آدرس اینترنتی https://pypi.org/project/cmdbtools/
مجوز BSD (3-clause)
cmdbtools: A command line tools for CMDB varaints browser ========================================================= [![PyPI Version](https://img.shields.io/pypi/v/cmdbtools.svg)](https://pypi.org/project/cmdbtools/) [![License](https://img.shields.io/pypi/l/cmdbtools.svg)](https://github.com/ShujiaHuang/cmdbtools/blob/master/LICENSE) Introduction ------------ China is the most populous country and the second largest economy in the world. However, the construction of Chinese genome database is in slow progress. At present, among the world\'s large-scale international and national genome sequencing projects, such as 1KGP, Genomics England, Genome of the Netherlands, ExAC are mostly biased towards the construction of a genomic baseline for European populations. In those projects, while the sample size goes up to hundreds of thousands for samples with european ancestry in those database, the sequen-cing Chinese samples is no more than a thousand. Since a high-quality genomic baseline database serves as an important control for medical research and population-oriented clinical and drug applications, the Chinese millionome database (CMDB) is developed to fill the gap. The [Chinese Millionome Database(CMDB)](https://db.cngb.org/cmdb/) is a unique large-scale Chinese genomics database produced by BGI and hosted in the National GeneBank. The CMDB delivers peridical and useful variation information and scientific insights derived from the analysis of millions of Chinese sequencing data. The results aim to promote genetic research and precision medicine actions in China. The delivering information includes any of detected variants and the corresponding allele frequency, annotation, frequency comparison to the global populations from existing databases, etc. Benchmarking detail and methods are described in our *Cell* paper: Liu, S. et al.(2018) Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. *Cell*, 2, 347-359. [DOI:https://doi.org/10.1016/j.cell.2018.08.016](https://doi.org/10.1016/j.cell.2018.08.016) **cmdbtools** is a command line tool for this CMDB variants browser. Quick start ----------- CMDB variant browser allows authorized access its data through an Genomics API and **cmdbtools** is a convenient command line tools for this purpose. Installation ------------ Install the released version by `pip` (Only support Python3 since v1.1.0): ```bash pip install cmdbtools ``` Setup ----- Please enable your API access from Profile in [CMDB browser](https://db.cngb.org/cmdb) before using **cmdbtools**. Login ----- Login with `cmdbtools` by using CMDB API access key, which could be found from Profile-\>Genomics API if you have apply for it. [![cmdb_genomics_api](assets/figures/cmdb_genomics_api.png)](assets/figures/cmdb_genomics_api.png) ```bash cmdbtools login -k your-genomics-api-key ``` If everything goes smoothly, **means you can use CMDB as one of your varaints database in command line mode**. Logout ------ Logout `cmdbtools` by simply run the command below: ```bash cmdbtool logout ``` Query a single variant ---------------------- Variants could be retrieved from CMDB by using `query-varaint`. Run `cmdbtools query-variant -h` to see all available options. There\'re two different ways to retrive variants. One is to use `-c` and `-p` parameters for single variant, the other way uses `-l` for multiple positions. Here are examples for quering single varaint by chromosome name and position. ```bash cmdbtools query-variant -c chr17 -p 41234470 ``` and you will get something looks like below: ```bash ##fileformat=VCFv4.2 ##FILTER=<ID=LowQual,Description="Low quality"> ##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0"> #CHROM POS ID REF ALT QUAL FILTER INFO 17 41234470 rs1060915&CD086610&COSM4416375 A G 74.38 PASS CMDB_AF=0.361763,CMDB_AC=4625,CMDB_AN=12757 ``` Quering multiple varants. ------------------------- A list of variants could be retrieved from CMDB by using the parameters of `-l` when apply by `query-varaint`. ```bash cmdbtools query-variant -l positions.list > result.vcf ``` Format for [positions.list](tests/positions.list), could be a mixture of `chrom position` and `chrom start end`, even with or without `chr` in the chromosome ID column: ``` #CHROM POS chr22 17662378 chr22 17662408 22 17662442 22 17662444 22 17662699 22 17662729 22 17690496 22 17662353 17663671 22 17669209 17669357 ``` `result.vcf` is VCF format and looks like below: ``` ##fileformat=VCFv4.2 ##FILTER=<ID=LowQual,Description="Low quality"> ##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0"> #CHROM POS ID REF ALT QUAL FILTER INFO chr22 17662699 rs58754958 A G 59.86 PASS CMDB_AF=0.031047,CMDB_AC=441,CMDB_AN=13553 chr22 17662793 rs7289170 A G 64.23 PASS CMDB_AF=0.050419,CMDB_AC=842,CMDB_AN=16135 chr22 17669245 rs116020027 G T 30.3 PASS CMDB_AF=0.003453,CMDB_AC=43,CMDB_AN=11280 chr22 17690409 rs362129 G A 32.3 PASS CMDB_AF=0.065438,CMDB_AC=686,CMDB_AN=10236 ``` You can even use `-c` `-p` and `-l` simultaneously if you like. ```bash cmdbtools query-variant -c 22 -p 46616520 -l positions.list > result.vcf ``` Annotate your VCF files ----------------------- Annotate your VCF file with CMDB by using `cmdbtools annotate` command. Download a list of example variants in VCF format from [multiple_samples.vcf.gz](tests/multiple_samples.vcf.gz). To annotate this list of variants with allele frequences from CMDB, you can just run the following command in Linux or Mac OS. ```bash cmdbtools annotate -i multiple_samples.vcf.gz > multiple_samples_CMDB.vcf ``` It\'ll take about 2 ~ 3 minutes to complete 3,000+ variants\' annotation. Then you will get 4 new fields with the information of CMDB in VCF INFO: - `CMDB_AF`: Allele frequece in CMDB; - `CMDB_AN`: Coverage in CMDB in population level; - `CMDB_AC`: Allele count in population level in CMDB; - `CMDB_FILTER`: Filter status in CMDB. ``` ##fileformat=VCFv4.2 ##ALT=<ID=NON_REF,Description="Represents any possible alternative allele at this location"> ##FILTER=<ID=LowQual,Description="Low quality"> ##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed"> ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes"> ##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities"> ##reference=file:///home/tools/hg19_reference/ucsc.hg19.fasta ##INFO=<ID=CMDB_AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AC,Number=A,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_AF,Number=A,Type=Float,Description="Alternate Allele Frequencies from CMDB_hg19_v1.0"> ##INFO=<ID=CMDB_FILTER,Number=A,Type=Float,Description="Filter from CMDB_hg19_v1.0"> #CHROM POS ID REF ALT QUAL FILTER INFO chr21 9413612 . C T 6906.62 . AC=25;AF=0.313;AN=80;BaseQRankSum=0.425;CMDB_AC=2459;CMDB_AF=0.207525;CMDB_AN=11834;CMDB_FILTER=PASS chr21 9413629 . C T 8028.88 . AC=30;AF=0.375;AN=80;BaseQRankSum=-1.200e+00;CMDB_AC=6906;CMDB_AF=0.305445;CMDB_AN=22406;CMDB_FILTER=PASS chr21 9413700 . G A 7723.82 . AC=30;AF=0.375;AN=80;BaseQRankSum=-9.000e-02 chr21 9413735 . C A 10121.72 . AC=35;AF=0.438;AN=80;BaseQRankSum=0.977;CMDB_AC=2385;CMDB_AF=0.283965;CMDB_AN=8382;CMDB_FILTER=PASS chr21 9413839 . C T 8192.08 . AC=28;AF=0.350;AN=80;BaseQRankSum=-5.200e-02 chr21 9413840 . C A 11514.35 . AC=38;AF=0.475;AN=80;BaseQRankSum=0.253 chr21 9413870 . T C 7390.60 . AC=26;AF=0.325;AN=80;BaseQRankSum=-4.270e-01 chr21 9413880 . T A 146.96 . AC=1;AF=0.013;AN=80;BaseQRankSum=2.12;ClippingRankSum=0.00 chr21 9413909 . G A 1131.78 . AC=10;AF=0.125;AN=80;BaseQRankSum=0.549;CMDB_AC=209;CMDB_AF=0.01507;CMDB_AN=13683;CMDB_FILTER=PASS chr21 9413913 . C T 8120.65 . AC=28;AF=0.350;AN=80;BaseQRankSum=-4.390e-01;CMDB_AC=2870;CMDB_AF=0.205597;CMDB_AN=13955;CMDB_FILTER=PASS chr21 9413945 . T C 43787.68 . AC=71;AF=0.888;AN=80;BaseQRankSum=0.089 chr21 9413995 . C T 9632.44 . AC=29;AF=0.363;AN=80;BaseQRankSum=0.747 chr21 9413996 . A G 41996.48 . AC=71;AF=0.888;AN=80;BaseQRankSum=-1.242e+00;CMDB_AC=3308;CMDB_AF=0.688533;CMDB_AN=4790;CMDB_FILTER=PASS chr21 9414003 . T C 4256.54 . AC=19;AF=0.238;AN=80;BaseQRankSum=-6.030e-01 ``` Citation -------- **If you use CMDB in your scientific publication, we would appreciate citation this paper:** Siyang Liu, Shujia Huang. et al.(2018) Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. *Cell*, 2, 347-359. [DOI:https://doi.org/10.1016/j.cell.2018.08.016](https://doi.org/10.1016/j.cell.2018.08.016)


نحوه نصب


نصب پکیج whl cmdbtools-1.1.3:

    pip install cmdbtools-1.1.3.whl


نصب پکیج tar.gz cmdbtools-1.1.3:

    pip install cmdbtools-1.1.3.tar.gz