معرفی شرکت ها


cmaqml-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A simple package for applying Machine Learnign to CMAQ and associated obs.
ویژگی مقدار
سیستم عامل -
نام فایل cmaqml-0.2.1
نام cmaqml
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Barron Henderson
ایمیل نویسنده barronh@gmail.com
آدرس صفحه اصلی https://github.com/barronh/cmaqml
آدرس اینترنتی https://pypi.org/project/cmaqml/
مجوز -
Universal Kriging for CMAQ ========================== author: Barron H. Henderson original date: 2020-02-01 last updated: 2020-02-05 contributors: <your name here> Quick Start ----------- Open Working.ipynb for a working example. Review config.json to understand the options that are used. Status ------ Under active development. Currently, working with Ozone and PM for a single test day. Only ready for developers to test and help develop. Prerequisites ------------- * Python >= 3.6 * numpy >= 2 * pykrige >= 1.5.1 * Optional: * sklearn >= 0.24 Overview -------- Apply Universal Krigging as implemented in `pykrige` to CMAQ fields. This is an example of regression kriging where the mean is first removed using another model. The simplest example is a linear model, but cmaqkrig supports multilinear regression and Random Forest as well. The options here will expand over time. * `yhat = m CMAQ + b` * `CMAQ` : CMAQ concentrations in ppb * `m`, `b` : parameters fit by scipy.stats.linregress where y is AQS 1st maximum 8-hour average ozone * `yhat` : estimate based on CMAQ * `e` : `e = obs - yhat`; bias that is assumed to have spatial correlation * `UK_ERROR = Krig(e)` * `UK_TOTAL = yhat + UK_ERROR` Blending -------- In addition, cmaqkrig provides a mechanism that allows the mean estimation model and the UniversalKriging system to be optimized in subdomains and then reconstruct a complete surface by blending. Subdomains currently support splitting on latitIn addition to spatial subdomains, I use a urban/rural division as well. Mean Estimation Models ---------------------- Before kriging the residual, the package estimates the best fit of the model to observations using linear regression, multiple linear regression, or Random Forest. In upcoming versions, we are likely to support extended voronoi neighbor averaging, and custom models using the scipy.optimize framework. The models for the mean are accessed via the config.json file "regression_options" "model" key. * scipy_linregress: provides access to scipy.stats.linregress for univariate linear regression, * sklearn_LinearRegression: provides uni- or multi-variate regression via sklearn.linear_model.LinearRegression, or * sklearn_RandomForestRegressor: provides Ensemble Random Forest modeling via sklearn.ensemble.RandomForestRegressor * cmaqml_evna: provides an enhanced Voronoi Neighbor Averaging scheme. This has been custom built and may need to be made more efficient. At this point, the Voronoi neighbors are calculated for each point independently. Another approach would be to calculate one set of Voronoi diagrams and then find points within the single set of polygons. Any sklearn model is capable of being added. The challenge is in finding the right way to export the model as a text representation for meta-data. To add a new model from sklearn, follow the templates sklearn_LinearRegression and sklearn_RandomForestRegressor in scripts/models.py. Please submit any additions back to the project. Annotated Directory Structure ----------------------------- ``` . |-- README.md |-- config.json | # Fitting parameters and spatial domain splitting parameters |-- src/ | `-- cmaqml | | # CMAQ Machine Learning framework | |-- models | | # Module of known Machine Learning modules | | # Currently includes regression, Random Forest, eVNA and others | `-- obs | # Module of known observation readers. Currently only AQS |-- scripts | |-- validate_figs.py | | # Create validation figures including statistics from a single | | # withholding | |-- validate_stats.py | | # Create validation statistics from multiple witholdings | |-- make_maps.py | | # Script for visualization | `-- fitting.py | # not complete. Ideally, optimize UK settings for application to domains `-- examples/ |-- Working.ipynb | # Working example |-- Blend.ipynb | # An example where multiple subset grids are run | # and then blended. |-- input/ | |-- daily_44201_20160715.zip | | # subset of AQS; right now not part of repository for testing | |-- daily_88101_20160115.zip | | # subset of AQS; right now not part of repository for testing | |-- dailyavg.LST.Y_24.2016fh.v531.108US2.01.nc | | # A single day of PM25_FRM post-processed output from CMAQ | |-- O3_8HRMAX.LST.Y_24.2016fh.v531.108US2.5-9.nc | | # A single day of O3_8HRMAX post-processed output from CMAQ | |-- gpw_v4_une_atotpopbt_densy_108US2.IOAPI.nc | | # An IOAPI-like file with population density derived from the SEDAC | | # Gridded Population World v4 | |-- GRIDCRO2D.108US2.35L.160101.nc | | # A single day file with terrain height | |-- GRIDDESC | | # An IOAPI text file defining common grids | `-- make_test.py | # subset of CMAQ. right now not part of repository `-- output |-- UK.<YYYYMMDD>.<querykey>.nc | # outputs from cmaq_uk.py | # template where | # * YYYYMMDD is the date | # * querykey in: (EN|ES|WN|WS|ALL)_(URB|RUR|BOTH) `-- UK.YYYYMMDD.FUSED.<querykey>.nc where # outputs from blend.py # where querykey in ALL_URB, ALL_RUR, oroutputs from blend.py ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cmaqml-0.2.1:

    pip install cmaqml-0.2.1.whl


نصب پکیج tar.gz cmaqml-0.2.1:

    pip install cmaqml-0.2.1.tar.gz