معرفی شرکت ها


clustviz-0.0.6b0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A 2D clustering algorithms visualization package
ویژگی مقدار
سیستم عامل -
نام فایل clustviz-0.0.6b0
نام clustviz
نسخه کتابخانه 0.0.6b0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Guglielmo Sanchini
ایمیل نویسنده guglielmosanchini@gmail.com
آدرس صفحه اصلی https://github.com/guglielmosanchini/ClustViz
آدرس اینترنتی https://pypi.org/project/clustviz/
مجوز -
[![Build Status](https://travis-ci.com/guglielmosanchini/ClustViz.svg?branch=master)](https://travis-ci.com/guglielmosanchini/ClustViz) [![codecov](https://codecov.io/gh/guglielmosanchini/ClustViz/branch/master/graph/badge.svg)](https://codecov.io/gh/guglielmosanchini/ClustViz) [![Documentation Status](https://readthedocs.org/projects/clustviz/badge/?version=latest)](https://clustviz.readthedocs.io/en/latest/?badge=latest) [![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) # ClustViz <img src="https://raw.githubusercontent.com/guglielmosanchini/ClustViz/master/data/clustviz_logo.png" width="200" height="200"> ## 2D Clustering Algorithms Visualization #### Check out [ClustVizGUI](https://github.com/guglielmosanchini/ClustVizGUI), too! The aim of ```ClustViz``` is to visualize every step of each clustering algorithm, in the case of 2D input data. The following algorithms have been examined: - OPTICS - DBSCAN - HDBSCAN - SPECTRAL CLUSTERING - HIERARCHICAL AGGLOMERATIVE CLUSTERING - single linkage - complete linkage - average linkage - Ward's method - CURE - BIRCH - PAM - CLARA - CLARANS - CHAMELEON - CHAMELEON2 - DENCLUE ## Instructions **Documentation**: [click here](https://clustviz.readthedocs.io/en/latest/) Install with ```python pip install clustviz ``` To run BIRCH algorithm, the open source visualization software Graphviz is required. Install Graphviz from the official webpage (https://graphviz.gitlab.io/download/) or using HomeBrew, then modify the PATH variable as follows (replace the string according to the path where you installed Graphviz): ```python import os # on Windows usually os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin' # on MacOS usually os.environ["PATH"] += os.pathsep + '/usr/local/bin' ``` To run CHAMELEON and CHAMELEON2 algorithms, the [METIS](https://metis.readthedocs.io/en/latest/) library is required. To install it on MacOS, execute the following commands (partially taken from [here](http://glaros.dtc.umn.edu/gkhome/metis/metis/download)): ```bash # download the file using wget (do it from the website if you prefer) wget http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/metis-5.1.0.tar.gz # uncompress it gunzip metis-5.1.0.tar.gz # untar it tar -xvf metis-5.1.0.tar # remove the tar rm metis-5.1.0.tar # go inside the folder cd metis-5.1.0 # install it using make make config shared=1 make install # export the dll export METIS_DLL=/usr/local/lib/libmetis.dylib ``` To install METIS on Windows, go to [conda-metis](https://github.com/guglielmosanchini/conda-metis) and follow the instructions. ## Usage Let's see a basic example using OPTICS: ```python from clustviz.optics import OPTICS, plot_clust from sklearn.datasets import make_blobs # create a random dataset X, y = make_blobs(n_samples=30, centers=4, n_features=2, cluster_std=1.8, random_state=42) # perform OPTICS algorithm, with plotting enabled ClustDist, CoreDist = OPTICS(X, eps=2, minPTS=3, plot=True, plot_reach=True) # plot the final clusters plot_clust(X, ClustDist, CoreDist, eps=2, eps_db=1.9) ``` For many other examples, take a look at the detailed [clustviz_example](https://github.com/guglielmosanchini/ClustViz/blob/master/data/clustviz_example.ipynb) notebook. ## Repository structure 1) The folder ```data/DOCUMENTS``` contains all the official papers, powerpoint presentations and other PDFs regarding all the algorithms involved and clustering in general. 2) The folder ```clustviz``` contains the scripts necessary to run the clustering algorithms. 3) The notebook ```data/clustviz_example.ipynb``` lets the user run every algorithm on 2D datasets; it contains a subsection for every algorithm, with the necessary modules and functions imported and some commented lines of code which can be uncommented to run the algorithms. 4) The folder ```docs``` contains the necessary files to build the documentation using Sphinx and ReadTheDocs. 5) The folder ```tests``` contains pytest tests. ## Credits for some algorithms I did not start to write the scripts for each algorithm from scratch; in some cases I modified some Python libraries, in other cases I took some publicly available GitHub repositories and modified the scripts contained there. The following list provides all the sources used when I did not write all the code by myself: - HDBSCAN https://hdbscan.readthedocs.io/en/latest/ - SPECTRAL CLUSTERING http://dx.doi.org/10.1007/s11222-007-9033-z - BIRCH https://github.com/annoviko/pyclustering/blob/master/pyclustering/cluster/birch.py - PAM https://github.com/SachinKalsi/kmedoids/blob/master/KMedoids.py - CLARA https://github.com/akalino/Clustering/blob/master/clara.py - CLARANS https://github.com/annoviko/pyclustering/blob/master/pyclustering/cluster/clarans.py - CHAMELEON https://github.com/Moonpuck/chameleon_cluster The other algorithms have been implemented from scratch following the relative papers. Thanks to Darius (https://github.com/dariomonici), the GUI Meister, for the help with PyQt5, used for [ClustVizGUI](https://github.com/guglielmosanchini/ClustVizGUI). ## Possible improvements - add more clustering algorithms - comment every code block and improve code quality - pymetis doesnt work on Windows, but could be an option for MacOS - add highlights to docstrings using `` - show aliases typehints using Sphinx (open issue) ## TravisCI path - if Travis CI doesn't trigger, it is probably because ```.travis.yml``` isn't properly formatted. Use ```yamllint``` to correct it - add package update - for the deployment phase: brew install ruby, brew install travis - added empty conftest.py in clustviz folder for tests in windows version


نیازمندی

مقدار نام
- metis-python
>=1.0.1 pandas
>=1.18.1 numpy
<=2.5 networkx
>=0.9.3.1 pyclustering
>=2.6.1 imageio
>=4.42.1 tqdm
<=3.3.3 matplotlib
>=1.4.1 scipy
==0.13.2 graphviz
>=0.22.1 scikit-learn


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl clustviz-0.0.6b0:

    pip install clustviz-0.0.6b0.whl


نصب پکیج tar.gz clustviz-0.0.6b0:

    pip install clustviz-0.0.6b0.tar.gz