معرفی شرکت ها


clustree-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Visualize relationship between clusterings at different resolutions
ویژگی مقدار
سیستم عامل -
نام فایل clustree-0.2.0
نام clustree
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ben Barlow
ایمیل نویسنده ben-j-barlow.1@gmail.com
آدرس صفحه اصلی https://github.com/ben-j-barlow/clustree
آدرس اینترنتی https://pypi.org/project/clustree/
مجوز GPL-3.0-or-later
# clustree ## Status **Functionality: Implemented** * Directed graph representing clustree. Nodes are parsed images and node information is encoded by a border surrounding the image. * Loading: Data provided directly or through a path to parent directory. Images provided through a path to parent directory. * Appearance: Edge and node color can correspond to one of: #samples that pass through edge/node, cluster resolution `K`, or a fixed color. In the case of node color, a column name in the data and aggregate function can be used too. Use of column name and #samples creates a continuous colormap, whilst the other options result in discrete colors. * Layout: Reingold-Tilford algorithm used for node positioning. Not recommended for kk > 12 due to memory bottleneck in igraph dependency. * Legend: demonstration of node / edge color. **Functionality: To Add** * Legend: demonstration of transparency of edges. * Layout: Bespoke implementation of Reingold-Tilford algorithm to overcome dependency's memory bottleneck. ## Usage ### Installation Install the package with pip: ``` pip install clustree ``` ### Quickstart The powerhouse function of the library is `clustree`. Use ``` from clustree import clustree ``` to import the function. A detailed description of the parameters is provided below. ``` def clustree( data: Union[Path, str], prefix: str, images: Union[Path, str], output_path: Optional[Union[Path, str]] = None, draw: bool = True, node_color: str = "prefix", node_color_aggr: Optional[Union[Callable, str]] = None, node_cmap: Union[mpl.colors.Colormap, str] = "inferno", edge_color: str = "samples", edge_cmap: Union[mpl.colors.Colormap, str] = "viridis", orientation: Literal["vertical", "horizontal"] = "vertical", layout_reingold_tilford: bool = None, min_cluster_number: Literal[0, 1] = 1, border_size: float = 0.05, figsize: tuple[float, float] = None, arrows: bool = None, node_size: float = 300, node_size_edge: Optional[float] = None, dpi: float = 500, kk: Optional[int] = None, ) -> DiGraph: """ ``` * `data` : Path of csv or DataFrame object. * `prefix` : String indicating columns containing clustering information. * `images` : Path of directory that contains images. * `output_path` : Absolute path to save clustree drawing at. If file extension is supplied, must be .png. If None, then output not written to file. * `draw` : Whether to draw the clustree. Defaults to True. If False and output_path supplied, will be overridden. * `node_color` : For continuous colormap, use 'samples' or the name of a metadata column to color nodes by. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set equal to value of prefix to color by resolution. * `node_color_aggr` : If node_color is a column name then a function or string giving the name of a function to aggregate that column for samples in each cluster. * `node_cmap` : If node_color is 'samples' or a column name then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html). * `edge_color` : For continuous colormap, use 'samples'. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set to 'samples'. * `edge_cmap` : If edge_color is 'samples' then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html). * `orientation` : Orientation of clustree drawing. Defaults to 'vertical'. * `layout_reingold_tilford` : Whether to use the Reingold-Tilford algorithm for node positioning. Defaults to True if (kk <= 12), False otherwise. Setting True not recommended if (kk > 12) due to memory bottleneck in igraph dependency. * `min_cluster_number` : 0 if cluster number is (0, ..., K-1) or 1 if (1, ..., K). Defaults to 1. * `border_size` : Border width as proportion of image width. Defaults to 0.05. * `figsize` : Parsed to matplotlib to determine figure size. Defaults to (kk/2, kk/2), clipped to a minimum of (3,3) and maximum of (10,10). * `arrows` : Whether to add arrows to graph edges. Removing arrows alleviates appearance issue caused by arrows overlapping nodes. Defaults to True. * `node_size` : Size of nodes in clustree graph drawing. Parsed directly to networkx.draw_networkx_nodes. Default to 300. * `node_size_edge`: Controls edge start and end point. Parsed directly to networkx.draw_networkx_edges. * `dpi` : Controls resolution of output if saved to file. * `kk` : Choose custom depth of clustree graph. ## Glossary * *cluster resolution*: Upper case `K`. For example, at cluster resolution `K=2` data is clustered into 2 distinct clusters. * *cluster number*: Lower case `k`. For example, at cluster resolution 2 data is clustered into 2 distinct clusters `k=1` and `k=2`. * *kk*: highest value of `K` (cluster resolution) shown in clustree. * *cluster membership*: The association between data points and cluster numbers for fixed cluster resolution. For example, `[1, 1, 2, 2, 2]` would mean the first 2 data points belong to cluster number `1` and the following 3 data points belong to cluster number `2`.


نیازمندی

مقدار نام
>=1.5,<2.0 pandas
>=3,<4 networkx
>=3.6,<4.0 matplotlib
==0.2.1 pairing-functions
>=0.10.4,<0.11.0 igraph
>=4.7.0.72,<5.0.0.0 opencv-python


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl clustree-0.2.0:

    pip install clustree-0.2.0.whl


نصب پکیج tar.gz clustree-0.2.0:

    pip install clustree-0.2.0.tar.gz