معرفی شرکت ها


clusterking-1.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cluster sets of histograms/curves, in particular kinematic distributions in high energy physics.
ویژگی مقدار
سیستم عامل -
نام فایل clusterking-1.1.0
نام clusterking
نسخه کتابخانه 1.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/clusterking/clusterking
آدرس اینترنتی https://pypi.org/project/clusterking/
مجوز MIT
.. note: Always use full path to image, from https://raw.githubusercontent.com/ because it won't render on pypi and others otherwise if you use the relative path from this repo :( .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/logo/logo.png :align: right Clustering of Kinematic Graphs ============================== |Build Status| |Coveralls| |Doc Status| |Pypi status| |Binder| |Chat| |License| |Black| .. |Build Status| image:: https://github.com/clusterking/clusterking/workflows/testing/badge.svg :target: https://github.com/clusterking/clusterking/actions :alt: CI .. |Coveralls| image:: https://coveralls.io/repos/github/clusterking/clusterking/badge.svg?branch=master :target: https://coveralls.io/github/clusterking/clusterking?branch=master .. |Doc Status| image:: https://readthedocs.org/projects/clusterking/badge/?version=latest :target: https://clusterking.readthedocs.io/ :alt: Documentation .. |Pypi Status| image:: https://badge.fury.io/py/clusterking.svg :target: https://pypi.org/project/clusterking/ :alt: Pypi .. |Binder| image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/badges/png/binder.png :target: https://mybinder.org/v2/gh/clusterking/clusterking/master?filepath=examples%2Fjupyter_notebooks :alt: Binder .. |Chat| image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/badges/png/gitter.png :target: https://gitter.im/clusterking/community :alt: Gitter .. |License| image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/badges/png/license.png :target: https://github.com/clusterking/clusterking/blob/master/LICENSE.txt :alt: License .. |Black| image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/badges/png/black.png :target: https://github.com/python/black :alt: Black .. start-body Description ----------- This package provides a flexible yet easy to use framework to cluster sets of histograms (or other higher dimensional data) and to select benchmark points representing each cluster. The package particularly focuses on use cases in high energy physics. A physics use case has been demonstrated in https://arxiv.org/abs/1909.11088. Physics Case ------------ While most of this package is very general and can be applied to a broad variety of use cases, we have been focusing on applications in high energy physics (particle physics) so far and provide additional convenience methods for this use case. In particular, most of the current tutorials are in this context. Though very successful, the Standard Model of Particle Physics is believed to be uncomplete, prompting the search for New Physics (NP). The phenomenology of NP models typically depends on a number of free parameters, sometimes strongly influencing the shape of distributions of kinematic variables. Besides being an obvious challenge when presenting exclusion limits on such models, this also is an issue for experimental analyses that need to make assumptions on kinematic distributions in order to extract features of interest, but still want to publish their results in a very general way. By clustering the NP parameter space based on a metric that quantifies the similarity of the resulting kinematic distributions, a small number of NP benchmark points can be chosen in such a way that they can together represent the whole parameter space. Experiments (and theorists) can then report exclusion limits and measurements for these benchmark points without sacrificing generality. Installation ------------ ``clusterking`` can be installed/upgraded with the `python package installer <https://pip.pypa.io/en/stable/>`_: .. code:: sh pip3 install --user --upgrade "clusterking[plotting]" If you do not require plotting, you can remove ``[plotting]``. More options and troubleshooting advice is given in the `documentation <https://clusterking.readthedocs.io/en/latest/installation.html>`_. Caveats ------- * Version 1.0.0 contained several mistakes in the chi2 metric. Please make sure that you are at least using versoin 1.1.0. These mistakes were also found in the `paper <https://arxiv.org/abs/1909.11088>`_ and will be fixed soon. Usage and Documentation ----------------------- Good starting point: **Jupyter notebooks** in the ``examples/jupyter_notebook`` directory. You can also try running them online right now (without any installation required) using |binder2|_ (just note that this is somewhat unstable, slow and takes some time to start up). .. |binder2| replace:: binder .. _binder2: https://mybinder.org/v2/gh/clusterking/clusterking/master?filepath=examples%2Fjupyter_notebooks .. _run online using binder: https://mybinder.org/v2/gh/clusterking/clusterking/master?filepath=examples%2Fjupyter_notebooks For a documentation of the classes and functions in this package, **read the docs on** |readthedocs.io|_. .. |readthedocs.io| replace:: **readthedocs.io** .. _readthedocs.io: https://clusterking.readthedocs.io/ For additional examples, presentations and more, you can also head to our `other repositories`_. .. _other repositories: https://github.com/clusterking Example ------- Sample ~~~~~~ The following code (taken from ``examples/jupyter_notebook/010_basic_tutorial.ipynb``) is all that is needed to cluster the shape of the ``q^2`` distribution of ``B -> D tau nu`` in the space of Wilson coefficients: .. code:: python import flavio import numpy as np import clusterking as ck s = ck.scan.WilsonScanner(scale=5, eft='WET', basis='flavio') # Set up kinematic function def dBrdq2(w, q): return flavio.np_prediction("dBR/dq2(B+->Dtaunu)", w, q) s.set_dfunction( dBrdq2, binning=np.linspace(3.2, 11.6, 10), normalize=True ) # Set sampling points in Wilson space s.set_spoints_equidist({ "CVL_bctaunutau": (-1, 1, 10), "CSL_bctaunutau": (-1, 1, 10), "CT_bctaunutau": (-1, 1, 10) }) # Create data object to write to and run d = ck.DataWithErrors() r = s.run(d) r.write() # Write results back to data object Cluster ~~~~~~~ Using hierarchical clustering: .. code:: python c = ck.cluster.HierarchyCluster() # Initialize worker class c.set_metric("euclidean") c.set_max_d(0.15) # "Cut off" value for hierarchy r = c.run(d) # Run clustering on d r.write() # Write results to d Benchmark points ~~~~~~~~~~~~~~~~ .. code:: python b = ck.Benchmark() # Initialize worker class b.set_metric("euclidean") r = b.run(d) # Select benchmark points based on metric r.write() # Write results back to d Plotting ~~~~~~~~ .. code:: python d.plot_clusters_scatter( ['CVL_bctaunutau', 'CSL_bctaunutau', 'CT_bctaunutau'], clusters=[1,2] # Only plot 2 clusters for better visibility ) .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/plots/scatter_3d_02.png .. code:: python d.plot_clusters_fill(['CVL_bctaunutau', 'CSL_bctaunutau']) .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/plots/fill_2d.png Plotting all benchmark points: .. code:: python d.plot_dist() .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/plots/all_bcurves.png Plotting minima and maxima of bin contents for all histograms in a cluster (+benchmark histogram): .. code:: python d.plot_dist_minmax(clusters=[0, 2]) .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/plots/minmax_02.png Similarly with box plots: .. code:: python d.plot_dist_box() .. image:: https://raw.githubusercontent.com/clusterking/clusterking/master/readme_assets/plots/box_plot.png License & Contributing ---------------------- This project is ongoing work and questions_, comments, `bug reports`_ or `pull requests`_ are most welcome. You can also use the chat room on gitter_ or contact us via email_. We are also working on a paper, so please make sure to cite us once we publish. .. _email: mailto:clusterkinematics@gmail.com .. _gitter: https://gitter.im/clusterking/community .. _questions: https://github.com/clusterking/clusterking/issues .. _bug reports: https://github.com/clusterking/clusterking/issues .. _pull requests: https://github.com/clusterking/clusterking/pulls This software is licenced under the `MIT license`_. .. _MIT license: https://github.com/clusterking/clusterking/blob/master/LICENSE.txt .. end-body


نیازمندی

مقدار نام
- colorlog
- gitpython
- numpy
- pandas
- scipy
- sklearn
- sqlalchemy
- tqdm
- wilson
- coveralls
- ipykernel
- jupyter-client
- nbconvert
- nbformat
- nbstripout
- pre-commit
- pytest-cov
- pytest-subtests
>=4.4.0 pytest
- sphinx
- sphinx-rtd-theme
- twine
- matplotlib


نحوه نصب


نصب پکیج whl clusterking-1.1.0:

    pip install clusterking-1.1.0.whl


نصب پکیج tar.gz clusterking-1.1.0:

    pip install clusterking-1.1.0.tar.gz