معرفی شرکت ها


clustering-geodata-cubes-0.6.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A clustering tool for geospatial applications
ویژگی مقدار
سیستم عامل -
نام فایل clustering-geodata-cubes-0.6.2
نام clustering-geodata-cubes
نسخه کتابخانه 0.6.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Netherlands eScience Center
ایمیل نویسنده team-atlas@esciencecenter.nl
آدرس صفحه اصلی https://github.com/phenology/cgc
آدرس اینترنتی https://pypi.org/project/clustering-geodata-cubes/
مجوز Apache Software License 2.0
.. list-table:: :widths: 25 25 :header-rows: 1 * - `fair-software.nl <https://fair-software.nl>`_ recommendations - Badges * - \1. Code repository - |GitHub Badge| * - \2. License - |License Badge| * - \3. Community Registry - |PyPI Badge| * - \4. Enable Citation - |Zenodo Badge| * - \5. Checklist - |CII Best Practices Badge| * - **Other best practices** - * - Continuous integration - |Python Build| |Python Publish| * - Documentation - |Documentation Status| .. |GitHub Badge| image:: https://img.shields.io/badge/github-repo-000.svg?logo=github&labelColor=gray&color=blue :target: https://github.com/phenology/cgc :alt: GitHub Badge .. |License Badge| image:: https://img.shields.io/github/license/phenology/cgc :target: https://github.com/phenology/cgc :alt: License Badge .. |PyPI Badge| image:: https://img.shields.io/pypi/v/clustering-geodata-cubes.svg?colorB=blue :target: https://pypi.python.org/project/clustering-geodata-cubes/ :alt: PyPI Badge .. |Zenodo Badge| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3979172.svg :target: https://doi.org/10.5281/zenodo.3979172 :alt: Zenodo Badge .. |CII Best Practices Badge| image:: https://bestpractices.coreinfrastructure.org/projects/4167/badge :target: https://bestpractices.coreinfrastructure.org/projects/4167 :alt: CII Best Practices Badge .. |Python Build| image:: https://github.com/phenology/cgc/workflows/Build/badge.svg :target: https://github.com/phenology/cgc/actions?query=workflow%3A%22Build%22 :alt: Python Build .. |Python Publish| image:: https://github.com/phenology/cgc/workflows/Publish/badge.svg :target: https://github.com/phenology/cgc/actions?query=workflow%3A%22Publish%22 :alt: Python Publish .. |Documentation Status| image:: https://readthedocs.org/projects/cgc/badge/?version=latest :target: https://cgc.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status CGC: Clustering Geo-Data Cubes ============================== The Clustering Geo-Data Cubes (CGC) package focuses on the needs of geospatial data scientists who require tools to make sense of multi-dimensional data cubes. It provides the functionality to perform **co-cluster** and **tri-cluster** analyses on both local and distributed systems. Installation ------------ To install CGC, do: .. code-block:: console pip install clustering-geodata-cubes Alternatively, you can clone this repository and install it using `pip`: .. code-block:: console git clone https://github.com/phenology/cgc.git cd cgc pip install . In order to run tests (including coverage) install the `dev` package version: .. code-block:: console git clone https://github.com/phenology/cgc.git cd cgc pip install .[dev] pytest -v Documentation ------------- The project's full API documentation can be found `online <https://cgc.readthedocs.io/en/latest/>`_. Including: - `Co-clustering <https://cgc.readthedocs.io/en/latest/coclustering.html>`_ - `Tri-clustering <https://cgc.readthedocs.io/en/latest/triclustering.html>`_ - `K-means refinement <https://cgc.readthedocs.io/en/latest/kmeans.html>`_ - `Utility Functions <https://cgc.readthedocs.io/en/latest/utils.html>`_ Examples of CGC applications on real geo-spatial data: - `Co-clustering application <https://cgc-tutorial.readthedocs.io/en/latest/notebooks/coclustering.html>`_ - `Tri-clustering application <https://cgc-tutorial.readthedocs.io/en/latest/notebooks/triclustering.html>`_ Tutorial -------- The tutorial of CGC can be found `here <https://cgc-tutorial.readthedocs.io/en/latest/index.html>`_. Contributing ------------ If you want to contribute to the development of cgc, have a look at the `contribution guidelines`_. .. _contribution guidelines: https://github.com/phenology/cgc/tree/master/CONTRIBUTING.rst License ------- Copyright (c) 2020-2022, Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Credits ------- The code has been developed as a collaborative effort between the `ITC, University of Twente`_ and `the Netherlands eScience Center`_ within the generalization of the project `High spatial resolution phenological modelling at continental scales`_. .. _ITC, University of Twente: https://www.itc.nl .. _High spatial resolution phenological modelling at continental scales: https://research-software.nl/projects/1334 .. _the Netherlands eScience Center: https://www.esciencecenter.nl This package was created with `Cookiecutter <https://github.com/audreyr/cookiecutter>`_ and the `NLeSC/python-template <https://github.com/NLeSC/python-template>`_.


نیازمندی

مقدار نام
- numpy
- dask[complete]
- scikit-learn
- numba
- matplotlib
- pytest
- pytest-cov
- pycodestyle


نحوه نصب


نصب پکیج whl clustering-geodata-cubes-0.6.2:

    pip install clustering-geodata-cubes-0.6.2.whl


نصب پکیج tar.gz clustering-geodata-cubes-0.6.2:

    pip install clustering-geodata-cubes-0.6.2.tar.gz