معرفی شرکت ها


cluster-over-sampling-0.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A general interface for clustering based over-sampling algorithms.
ویژگی مقدار
سیستم عامل -
نام فایل cluster-over-sampling-0.5.0
نام cluster-over-sampling
نسخه کتابخانه 0.5.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Georgios Douzas <gdouzas@icloud.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cluster-over-sampling/
مجوز MIT
[scikit-learn]: <http://scikit-learn.org/stable/> [imbalanced-learn]: <http://imbalanced-learn.org/stable/> [SMOTE]: <https://arxiv.org/pdf/1106.1813.pdf> [SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S0957417417302324> [KMeans-SMOTE]: <https://www.sciencedirect.com/science/article/abs/pii/S0020025518304997> [G-SOMO]: <https://www.sciencedirect.com/science/article/abs/pii/S095741742100662X> [black badge]: <https://img.shields.io/badge/%20style-black-000000.svg> [black]: <https://github.com/psf/black> [docformatter badge]: <https://img.shields.io/badge/%20formatter-docformatter-fedcba.svg> [docformatter]: <https://github.com/PyCQA/docformatter> [ruff badge]: <https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v1.json> [ruff]: <https://github.com/charliermarsh/ruff> [mypy badge]: <http://www.mypy-lang.org/static/mypy_badge.svg> [mypy]: <http://mypy-lang.org> [mkdocs badge]: <https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat> [mkdocs]: <https://squidfunk.github.io/mkdocs-material> [version badge]: <https://img.shields.io/pypi/v/cluster-over-sampling.svg> [pythonversion badge]: <https://img.shields.io/pypi/pyversions/cluster-over-sampling.svg> [downloads badge]: <https://img.shields.io/pypi/dd/cluster-over-sampling> [gitter]: <https://gitter.im/cluster-over-sampling/community> [gitter badge]: <https://badges.gitter.im/join%20chat.svg> [discussions]: <https://github.com/georgedouzas/cluster-over-sampling/discussions> [discussions badge]: <https://img.shields.io/github/discussions/georgedouzas/cluster-over-sampling> [ci]: <https://github.com/georgedouzas/cluster-over-sampling/actions?query=workflow> [ci badge]: <https://github.com/georgedouzas/cluster-over-sampling/actions/workflows/ci.yml/badge.svg> [doc]: <https://github.com/georgedouzas/cluster-over-sampling/actions?query=workflow> [doc badge]: <https://github.com/georgedouzas/cluster-over-sampling/actions/workflows/doc.yml/badge.svg?branch=master> # cluster-over-sampling [![ci][ci badge]][ci] [![doc][doc badge]][doc] | Category | Tools | | ------------------| -------- | | **Development** | [![black][black badge]][black] [![ruff][ruff badge]][ruff] [![mypy][mypy badge]][mypy] [![docformatter][docformatter badge]][docformatter] | | **Package** | ![version][version badge] ![pythonversion][pythonversion badge] ![downloads][downloads badge] | | **Documentation** | [![mkdocs][mkdocs badge]][mkdocs]| | **Communication** | [![gitter][gitter badge]][gitter] [![discussions][discussions badge]][discussions] | ## Introduction A general interface for clustering based over-sampling algorithms. ## Installation `cluster-over-sampling` is currently available on the PyPi's repository, and you can install it via `pip`: ```bash pip install cluster-over-sampling ``` SOM clusterer requires optional dependencies: ```bash pip install cluster-over-sampling[som] ``` Similarly for Geometric SMOTE oversampler: ```bash pip install cluster-over-sampling[gsmote] ``` You can also install both of them: ```bash pip install cluster-over-sampling[all] ``` ## Usage All the classes included in `cluster-over-sampling` follow the [imbalanced-learn] API using the functionality of the base oversampler. Using [scikit-learn] convention, the data are represented as follows: - Input data `X`: 2D array-like or sparse matrices. - Targets `y`: 1D array-like. The clustering-based oversamplers implement a `fit` method to learn from `X` and `y`: ```python clustering_based_oversampler.fit(X, y) ``` They also implement a `fit_resample` method to resample `X` and `y`: ```python X_resampled, y_resampled = clustering_based_oversampler.fit_resample(X, y) ``` ## References If you use `cluster-over-sampling` in a scientific publication, we would appreciate citations to any of the following papers: [^1]: [G. Douzas, F. Bacao, "Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning", Expert Systems with Applications, vol. 82, pp. 40-52, 2017.][SOMO] [^2]: [G. Douzas, F. Bacao, F. Last, "Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE", Information Sciences, vol. 465, pp. 1-20, 2018.][KMeans-SMOTE] [^3]: [G. Douzas, F. Bacao, F. Last, "G-SOMO: An oversampling approach based on self-organized maps and geometric SMOTE", Expert Systems with Applications, vol. 183,115230, 2021.][G-SOMO]


نیازمندی

مقدار نام
- imbalanced-learn>=0.9.0
- nptyping>=2.5.0
- numpy>=1.22
- scikit-learn>=1.1.1
- scipy>=1.7.2
xtr som-learn>=0.1.1;
xtr geometric-smote>=0.2.0;
xtr geometric-smote>=0.2.0;
xtr som-learn>=0.1.1;


زبان مورد نیاز

مقدار نام
>=3.10, <3.12 Python


نحوه نصب


نصب پکیج whl cluster-over-sampling-0.5.0:

    pip install cluster-over-sampling-0.5.0.whl


نصب پکیج tar.gz cluster-over-sampling-0.5.0:

    pip install cluster-over-sampling-0.5.0.tar.gz