معرفی شرکت ها


cloudmesh-gpu-4.3.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A command called gpu and foo for the cloudmesh shell
ویژگی مقدار
سیستم عامل -
نام فایل cloudmesh-gpu-4.3.9
نام cloudmesh-gpu
نسخه کتابخانه 4.3.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gregor von Laszewski
ایمیل نویسنده laszewski@gmail.com
آدرس صفحه اصلی https://github.com/cloudmesh/cloudmesh-gpu
آدرس اینترنتی https://pypi.org/project/cloudmesh-gpu/
مجوز Apache 2.0
# cms gpu command Note: This file is automatically created. Please do not modify it. Please change the code instead. ``` Usage: gpu watch [--gpu=GPU] [--delay=SECONDS] [--logfile=LOGFILE] [--count=COUNT] [--dense] gpu --json [--gpu=GPU] [--pretty] [FILE] gpu --xml gpu --yaml gpu processes [--gpu=GPU] [--format=FORMAT] [--detail] gpu system gpu status gpu count gpu kill gpu show --output=OUTPUT FILE gpu This command returns some information about NVIDIA GPUs if your system has them. Please use the cms command in the commandline with `cms gpu` Options: --json returns the information in json --xml returns the information in xml --yaml returns the information in xml --logfile=LOGFILE the logfile --count=COUNT how many times the watch is run [default: -1] --dense do not print any spaces [default: False] --detail short process names [default: False] --format=FORMAT table, json, yaml [default: table] --gpu=GPUS Description: Although some GPU information tools exist, we did not find all information that we needed. Also the output format was not convenient enough for later analysis. The program we developed can obtain information at specified intervals. Note that at this time the tool is restricted to NVIDIA GPU's. cms gpu kill In case you run the gpu command in the background you can kill it with the `kill command` cms gpu count Returns the number of GPUS. gpu watch [--gpu=GPU] [--delay=SECONDS] [--logfile=LOGFILE] [--count=COUNT] [--dense] This command allows to print environmental variables in a continious fashion. If count is used the command is executed that number of times. If it is ommitted it runs continiously. The delay specifies how many seconds between invocations are dealyed. The `logfile` specifies an output file in which the events are written. By default spaces are included so the output has a table like format. The spaces can be eliminated with dense so that less space is used in the log file. In case multiple GPUs are present one can select specific GPUs fr which the monitoring entries are generated. The watch command output is proceeded by a header that is adapted based on the gpus specified. This makes it possible to read in the file as dataframe and apply easily plotting tools. An example output looks like (the newline in this example in the header was introduced to increase readability of this documentation. In an execution it is one line. # #################################################################################### # time, 0 id, 0 gpu_util %, 0 memory_util %, 0 encoder_util %, 0 decoder_util %, # ... 0 gpu_temp C, 0 power_draw W 2022-03-18 11:26:40.877006, 0, 11, 16, 0, 0, 49, 47.47 2022-03-18 11:26:40.983229, 0, 17, 17, 0, 0, 49, 47.59 2022-03-18 11:26:41.093406, 0, 17, 17, 0, 0, 49, 47.88 gpu --json [--gpu=GPU] [--pretty] [FILE] Prints out the information in json format. We have eliminated some of the attributes that are not important to us at this time. with the `pretty` flag the json is printed in indented pretty format. The FILE parameter is used to read in a saved instance from nvidid-smi. gpu --xml Prints out the information in xml format. This is the format that is retrieved from nvidia-smi. The gpu selection flag is not enabled for this format. If you want to implement it, create a pull request. gpu --yaml Prints out the information in yaml format. The gpu selection flag is not enabled for this format. If you want to implement it, create a pull request. gpu processes [--gpu=GPU] [--format=FORMAT] [--detail] Prints out the processes running on the GPU in the specified format for the selected GPUs. The process name is shortened based on removing the path of the command. If the full path is needed one can use the `detail` flag. Allowed formats are table, csv, json, and yaml. A sample output for a table looks similar to +-----+-----+-----+------+-------------+---------------------+-----------------+--------------+ | job | gpu | pid | type | used_memory | compute_instance_id | gpu_instance_id | process_name | +-----+-----+-----+------+-------------+---------------------+-----------------+--------------+ | 1 | 0 | 173 | G | 198 MiB | N/A | N/A | Xorg | | 2 | 0 | 260 | G | 610 MiB | N/A | N/A | Xorg | | 3 | 0 | 274 | G | 49 MiB | N/A | N/A | gnome-shell | | 4 | 0 | 436 | G | 27 MiB | N/A | N/A | zoom | | 5 | 0 | 321 | G | 100 MiB | N/A | N/A | slack | | 6 | 0 | 591 | G | 11 MiB | N/A | N/A | firefox | +-----+-----+-----+------+-------------+---------------------+-----------------+--------------+ gpu system Returns information about the GPU card [ { "product_name": "NVIDIA GeForce RTX 3090", "product_brand": "GeForce", "product_architecture": "Ampere", "vbios_version": "94.02.42.00.A9", "inforom_version": { "img_version": "G001.0000.03.03", "oem_object": "2.0", "ecc_object": "N/A", "pwr_object": "N/A" }, "accounted_processes": null, "vendor": "ASUSTeK Computer Inc. Device [abcd:1234]" } ] gpu status Returns elementary status information such as environmental sensors [ { "fan_speed": "0 %", "utilization": { "gpu_util": "18 %", "memory_util": "18 %", "encoder_util": "0 %", "decoder_util": "0 %" }, "temperature": { "gpu_temp": "48 C", "gpu_temp_max_threshold": "98 C", "gpu_temp_slow_threshold": "95 C", "gpu_temp_max_gpu_threshold": "93 C", "gpu_target_temperature": "83 C", "memory_temp": "N/A", "gpu_temp_max_mem_threshold": "N/A" }, "supported_gpu_target_temp": { "gpu_target_temp_min": "65 C", "gpu_target_temp_max": "91 C" }, "power_readings": { "power_state": "P8", "power_management": "Supported", "power_draw": "47.28 W", "power_limit": "390.00 W", "default_power_limit": "390.00 W", "enforced_power_limit": "390.00 W", "min_power_limit": "100.00 W", "max_power_limit": "480.00 W" }, "clocks": { "graphics_clock": "210 MHz", "sm_clock": "210 MHz", "mem_clock": "405 MHz", "video_clock": "555 MHz" }, "voltage": { "graphics_volt": "737.500 mV" }, "accounted_processes": null } ] ```


نیازمندی

مقدار نام
- cloudmesh-cmd5
- cloudmesh-sys
- cloudmesh-inventory
- cloudmesh-configuration
- xmltodict


نحوه نصب


نصب پکیج whl cloudmesh-gpu-4.3.9:

    pip install cloudmesh-gpu-4.3.9.whl


نصب پکیج tar.gz cloudmesh-gpu-4.3.9:

    pip install cloudmesh-gpu-4.3.9.tar.gz