معرفی شرکت ها


clloader-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A DataLoader library for Continual Learning in PyTorch.
ویژگی مقدار
سیستم عامل -
نام فایل clloader-0.0.2
نام clloader
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Arthur DOuillard
ایمیل نویسنده ar.douillard@gmail.com
آدرس صفحه اصلی https://github.com/arthurdouillard/continual_loader
آدرس اینترنتی https://pypi.org/project/clloader/
مجوز -
# Continual Loader (CLLoader) [![PyPI version](https://badge.fury.io/py/clloader.svg)](https://badge.fury.io/py/clloader) [![Build Status](https://travis-ci.com/arthurdouillard/continual_loader.svg?branch=master)](https://travis-ci.com/arthurdouillard/continual_loader) ## A library for PyTorch's loading of datasets in the field of Continual Learning Aka Continual Learning, Lifelong-Learning, Incremental Learning, etc. ### Example: Install from and PyPi: ```bash pip3 install clloader ``` And run! ```python from torch.utils.data import DataLoader from clloader import CLLoader from clloader.datasets import MNIST clloader = CLLoader( MNIST("my/data/path", download=True), increment=1, initial_increment=5 ) print(f"Number of classes: {clloader.nb_classes}.") print(f"Number of tasks: {clloader.nb_tasks}.") for task_id, (train_dataset, test_dataset) in enumerate(clloader): train_loader = DataLoader(train_dataset) test_loader = DataLoader(test_dataset) # Do your cool stuff here ``` ### Supported Scenarios |Name | Acronym | Supported | |:----|:---|:---:| | **New Instances** | NI | :x: | | **New Classes** | NC | :white_check_mark: | | **New Instances & Classes** | NIC | :x: | ### Supported Datasets: Note that the task sizes are fully customizable. |Name | Nb classes | Image Size | Automatic Download | |:----|:---:|:----:|:---:| | **MNIST** | 10 | 28x28x1 | :white_check_mark: | | **Fashion MNIST** | 10 | 28x28x1 | :white_check_mark: | | **KMNIST** | 10 | 28x28x1 | :white_check_mark: | | **EMNIST** | 10 | 28x28x1 | :white_check_mark: | | **QMNIST** | 10 | 28x28x1 | :white_check_mark: | | **MNIST Fellowship** | 30 | 28x28x1 | :white_check_mark: | | **CIFAR10** | 10 | 32x32x3 | :white_check_mark: | | **CIFAR100** | 100 | 32x32x3 | :white_check_mark: | | **CIFAR Fellowship** | 110 | 32x32x3 | :white_check_mark: | | **ImageNet100** | 100 | 224x224x3 | :x: | | **ImageNet1000** | 1000 | 224x224x3 | :x: | | **Permuted MNIST** | 10 | 28x28x1 | :white_check_mark: | | **Rotated MNIST** | 10 | 28x28x1 | :white_check_mark: | Furthermore some "Meta"-datasets are available: **InMemoryDataset**, for in-memory numpy array: ```python x_train, y_train = gen_numpy_array() x_test, y_test = gen_numpy_array() clloader = CLLoader( InMemoryDataset(x_train, y_train, x_test, y_test), increment=10, ) ``` **PyTorchDataset**,for any dataset defined in torchvision: ```python clloader = CLLoader( PyTorchDataset("/my/data/path", dataset_type=torchvision.datasets.CIFAR10), increment=10, ) ``` **ImageFolderDataset**, for datasets having a tree-like structure, with one folder per class: ```python clloader = CLLoader( ImageFolderDataset("/my/train/folder", "/my/test/folder"), increment=10, ) ``` **Fellowship**, to combine several continual datasets.: ```python clloader = CLLoader( Fellowship("/my/data/path", dataset_list=[CIFAR10, CIFAR100]), increment=10, ) ``` Some datasets cannot provide an automatic download of the data for miscealleneous reasons. For example for ImageNet, you'll need to download the data from the [official page](http://www.image-net.org/challenges/LSVRC/2012/downloads). Then load it likewise: ```python clloader = CLLoader( ImageNet1000("/my/train/folder", "/my/test/folder"), increment=10, ) ``` Some papers use a subset, called ImageNet100 or ImageNetSubset. You'll need to get the subset ids. It's either a file in the following format: ``` my/path/to/image0.JPEG target0 my/path/to/image1.JPEG target1 ``` Or a list of tuple `[("my/path/to/image0.JPEG", target0), ...]`. Then loading the continual loader is very simple: ```python clloader = CLLoader( ImageNet100( "/my/train/folder", "/my/test/folder", train_subset=... # My subset ids test_subset=... # My subset ids ), increment=10, ) ``` ### Continual Loader The Continual Loader `CLLoader` loads the data and batch it in several tasks. See there some example arguments: ```python clloader = CLLoader( my_continual_dataset, increment=10, initial_increment=2, train_transformations=[transforms.RandomHorizontalFlip()], common_transformations=[ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ], evaluate_on="seen" ) ``` Here the first task is made of 2 classes, then all following tasks of 10 classes. You can have a more finegrained increment by providing a list of ìncrement=[2, 10, 5, 10]`. The `train_transformations` is applied only on the training data, while the `common_transformations` on both the training and testing data. By default, we evaluate our model after each task on `seen` classes. But you can evalute only on `current` classes, or even on `all` classes. ### Sample Images **MNIST**: |<img src="images/mnist_0.jpg" width="150">|<img src="images/mnist_1.jpg" width="150">|<img src="images/mnist_2.jpg" width="150">|<img src="images/mnist_3.jpg" width="150">|<img src="images/mnist_4.jpg" width="150">| |:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:| |Task 0 | Task 1 | Task 2 | Task 3 | Task 4| **FashionMNIST**: |<img src="images/fashion_mnist_0.jpg" width="150">|<img src="images/fashion_mnist_1.jpg" width="150">|<img src="images/fashion_mnist_2.jpg" width="150">|<img src="images/fashion_mnist_3.jpg" width="150">|<img src="images/fashion_mnist_4.jpg" width="150">| |:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:| |Task 0 | Task 1 | Task 2 | Task 3 | Task 4| **CIFAR10**: |<img src="images/cifar10_0.jpg" width="150">|<img src="images/cifar10_1.jpg" width="150">|<img src="images/cifar10_2.jpg" width="150">|<img src="images/cifar10_3.jpg" width="150">|<img src="images/cifar10_4.jpg" width="150">| |:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:| |Task 0 | Task 1 | Task 2 | Task 3 | Task 4| **MNIST Fellowship (MNIST + FashionMNIST + KMNIST)**: |<img src="images/mnist_fellowship_0.jpg" width="150">|<img src="images/mnist_fellowship_1.jpg" width="150">|<img src="images/mnist_fellowship_2.jpg" width="150">| |:-------------------------:|:-------------------------:|:-------------------------:| |Task 0 | Task 1 | Task 2 | **PermutedMNIST**: |<img src="images/mnist_permuted_0.jpg" width="150">|<img src="images/mnist_permuted_1.jpg" width="150">|<img src="images/mnist_permuted_2.jpg" width="150">|<img src="images/mnist_permuted_3.jpg" width="150">|<img src="images/mnist_permuted_4.jpg" width="150">| |:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:| |Task 0 | Task 1 | Task 2 | Task 3 | Task 4|


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl clloader-0.0.2:

    pip install clloader-0.0.2.whl


نصب پکیج tar.gz clloader-0.0.2:

    pip install clloader-0.0.2.tar.gz