معرفی شرکت ها


clinica-0.7.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Software platform for clinical neuroimaging studies
ویژگی مقدار
سیستم عامل -
نام فایل clinica-0.7.4
نام clinica
نسخه کتابخانه 0.7.4
نگهدارنده ['Clinica developers']
ایمیل نگهدارنده ['clinica-user@inria.fr']
نویسنده ARAMIS Lab
ایمیل نویسنده -
آدرس صفحه اصلی https://www.clinica.run
آدرس اینترنتی https://pypi.org/project/clinica/
مجوز MIT
<!--(http://www.clinica.run/img/clinica_brainweb.png)--> <!-- markdownlint-disable MD033 --> <h1 align="center"> <a href="http://www.clinica.run"> <img src="http://www.clinica.run/assets/images/clinica-icon-257x257.png" alt="Logo" width="120" height="120"> </a> <br/> Clinica </h1> <p align="center"><strong>Software platform for clinical neuroimaging studies</strong></p> <p align="center"> <a href="https://ci.inria.fr/clinica-aramis/job/clinica/job/dev/"> <img src="https://ci.inria.fr/clinica-aramis/buildStatus/icon?job=clinica%2Fdev" alt="Build Status"> </a> <a href="https://badge.fury.io/py/clinica"> <img src="https://badge.fury.io/py/clinica.svg" alt="PyPI version"> </a> <a href="https://pypi.org/project/clinica"> <img src="https://img.shields.io/pypi/pyversions/clinica" alt="Supported Python versions"> </a> <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/"> </a> <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/"> <img src="https://anaconda.org/aramislab/clinica/badges/platforms.svg" alt="platform"> </a> <a href="https://github.com/psf/black"> <img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black"> </a> <a href="https://pepy.tech/project/clinica"> <img src="https://static.pepy.tech/badge/clinica/month" alt="Downloads"> </a> </p> <p align="center"> <a href="http://www.clinica.run">Homepage</a> | <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/">Documentation</a> | <a href="https://doi.org/10.3389/fninf.2021.689675">Paper</a> | <a href="https://github.com/aramis-lab/clinica/discussions">Forum</a> | See also: <a href="#related-repositories">AD-ML</a>, <a href="#related-repositories">AD-DL</a>, <a href="#related-repositories">ClinicaDL</a> </p> ## About The Project Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data (neuroimaging, clinical and cognitive evaluations, genetics...), most often with longitudinal follow-up. Clinica is command-line driven and written in Python. It uses the [Nipype](https://nipype.readthedocs.io/) system for pipelining and combines widely-used software packages for neuroimaging data analysis ([ANTs](http://stnava.github.io/ANTs/), [FreeSurfer](https://surfer.nmr.mgh.harvard.edu/), [FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), [MRtrix](https://www.mrtrix.org/), [PETPVC](https://github.com/UCL/PETPVC), [SPM](https://www.fil.ion.ucl.ac.uk/spm/)), machine learning ([Scikit-learn](https://scikit-learn.org/stable/)) and the [BIDS standard](http://bids-specification.readthedocs.io/) for data organization. Clinica provides tools to convert publicly available neuroimaging datasets into BIDS, namely: - [ADNI: Alzheimer’s Disease Neuroimaging Initiative](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/) - [AIBL: Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/AIBL2BIDS/) - [HABS: Harvard Aging Brain Study](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/HABS2BIDS/) - [NIFD: Neuroimaging in Frontotemporal Dementia](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/NIFD2BIDS/) - [OASIS: Open Access Series of Imaging Studies](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS2BIDS/) - [OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer’s Disease](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS3TOBIDS/) Clinica can process any BIDS-compliant dataset with a set of complex processing pipelines involving different software packages for the analysis of neuroimaging data (T1-weighted MRI, diffusion MRI and PET data). It also provides integration between feature extraction and statistics, machine learning or deep learning. ![ClinicaPipelines](http://www.clinica.run/img/Clinica_Pipelines_A4_2021-04-02_75dpi.jpg) Clinica is also showcased as a framework for the reproducible classification of Alzheimer's disease using [machine learning](https://github.com/aramis-lab/AD-ML) and [deep learning](https://github.com/aramis-lab/clinicadl). ## Getting Started > Full instructions for installation and additional information can be found in the [user documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/). ### Using pipx (recommended) Clinica can be easily installed and updated using [pipx](https://pypa.github.io/pipx/). ```console pipx install clinica ``` ### Using pip ```console pip install clinica ``` ### Using Conda Clinica relies on multiple third-party tools to perform processing. An environment file is provided in this repository to facilitate their installation in a [Conda](https://docs.conda.io/en/latest/miniconda.html) environment: ```console git clone https://github.com/aramis-lab/clinica && cd clinica conda env create conda activate clinica ``` After activation, use `pip` to install Clinica. ### Additional dependencies (required) Depending on the pipeline that you want to use, you need to install pipeline-specific interfaces. Some of which uses a different runtime or use incompatible licensing terms, which prevent their distribution alongside Clinica. Not all the dependencies are necessary to run Clinica. Please refer to this [page](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Third-party/) to determine which third-party libraries you need to install. ## Example Diagram illustrating the Clinica pipelines involved when performing a group comparison of FDG PET data projected on the cortical surface between patients with Alzheimer's disease and healthy controls from the ADNI database: ![ClinicaExample](http://www.clinica.run/img/Clinica_Example_2021-04-02_75dpi.jpg) 1. Clinical and neuroimaging data are downloaded from the ADNI website and data are converted into BIDS with the [`adni-to-bids` converter](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/). 2. Estimation of the cortical and white surface is then produced by the [`t1-freesurfer` pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_FreeSurfer/). 3. FDG PET data can be projected on the subject’s cortical surface and normalized to the FsAverage template from FreeSurfer using the [`pet-surface` pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/PET_Surface/). 4. TSV file with demographic information of the population studied is given to the [`statistics-surface` pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/Stats_Surface/) to generate the results of the group comparison. > For more examples and details, please refer to the > [Documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/). ## Support - Check for [past answers](https://groups.google.com/forum/#!forum/clinica-user) in the old Clinica Google Group - Start a [discussion](https://github.com/aramis-lab/clinica/discussions) on Github - Report an [issue](https://github.com/aramis-lab/clinica/issues) on GitHub ## Contributing We encourage you to contribute to Clinica! Please check out the [Contributing to Clinica guide](CONTRIBUTING.md) for guidelines about how to proceed. Do not hesitate to ask questions if something is not clear for you, report an issue, etc. ## License This software is distributed under the MIT License. See [license file](https://github.com/aramis-lab/clinica/blob/dev/LICENSE.txt) for more information. ## Citing us - Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T., Lu, P., Marcoux, A., Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: *Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies* Frontiers in Neuroinformatics, 2021 [doi:10.3389/fninf.2021.689675](https://doi.org/10.3389/fninf.2021.689675) ## Related Repositories - [AD-DL: Classification of Alzheimer's disease status with convolutional neural networks](https://github.com/aramis-lab/AD-DL). - [AD-ML: Framework for the reproducible classification of Alzheimer's disease using machine learning](https://github.com/aramis-lab/AD-ML). - [ClinicaDL: Framework for the reproducible processing of neuroimaging data with deep learning methods](https://github.com/aramis-lab/clinicadl).


نیازمندی

مقدار نام
>=1.9.4,<2.0.0 argcomplete
>=20.1.0 attrs
>=0.3.6,<0.4.0 brainstat
>=1.9.0,<2.0.0 cattrs
>=8,<9 click
>=0.5,<0.6 click-option-group
>=5,<6 colorlog
- fsspec
>=3,<4 jinja2
>=1.2.0,<2.0.0 joblib
- matplotlib
>=2,<3 networkx
>=3.2.2,<4.0.0 nibabel
- niflow-nipype1-workflows
>=0.9.2,<0.10.0 nilearn[plotting]
>=1.7.1,<1.8.3 nipype
>=1.17,<2.0 numpy
- openpyxl
>=1.4,<2.0 pandas
>=0.15.1,<0.16.0 pybids
- pydicom
>=0.21,<0.22 pydra
>=0.0.10,<0.0.11 pydra-bids
>=0.0.9,<0.0.10 pydra-freesurfer
>=0.2,<0.3 pydra-nipype1
>=0.19,<0.20 scikit-image
>=1.0,<2.0 scikit-learn
>=1.7,<2.0 scipy
- xgboost
- xlrd
- xvfbwrapper


زبان مورد نیاز

مقدار نام
>=3.8,<3.12 Python


نحوه نصب


نصب پکیج whl clinica-0.7.4:

    pip install clinica-0.7.4.whl


نصب پکیج tar.gz clinica-0.7.4:

    pip install clinica-0.7.4.tar.gz