معرفی شرکت ها


climate-resilience-0.4.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Download, Preprocessing, and Visualization code for climate resilience data.
ویژگی مقدار
سیستم عامل -
نام فایل climate-resilience-0.4.9
نام climate-resilience
نسخه کتابخانه 0.4.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Satyarth Praveen, Zexuan Xu, Haruko Wainwright
ایمیل نویسنده satyarth@lbl.gov, zexuanxu@lbl.gov, hmwainwright@lbl.gov
آدرس صفحه اصلی https://github.com/ALTEMIS-DOE/climate-resilience.git
آدرس اینترنتی https://pypi.org/project/climate-resilience/
مجوز -
# climate-resilience <a href="https://pypi.org/project/climate-resilience/"><img alt="PyPI" src="https://img.shields.io/pypi/v/black"></a> --- ## [Download Examples](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/scripts/download_example.py) This file requires a [`download_params.yml`](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/scripts/download_params.yml) file to specify the download configurations. We cannot directly download the data from the Google Earth Engine directly onto the local machine. So the best option is to download to the drive and then download that data to the local drive. --- ## [Preprocess Examples](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/scripts/preprocess_example.py) The preprocessing functions will expect that the local data drive contains the downloaded data. If the data is on drive, the drive needs to be mounted. This is easier to do in a google colab session. Once the drive is mounted, the path of the mounted drive can be used with the functions as normal. #### Expected file and directory structure: The input file and directory structure for functions `calculate_Nth_percentile()`, `calculate_pr_count_amount()`, and `calculate_temporal_mean()` in the [preprocessing code](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/src/climate_resilience/preprocess.py) should be as follows: ``` datadir ├── scenario1_variable1_ensemble │   ├── name1_state1_scenario1_variable1.csv │   └── name2_state2_scenario1_variable1.csv ├── scenario1_variable2_ensemble │   ├── name1_state1_scenario1_variable2.csv │   └── name2_state2_scenario1_variable2.csv ├── scenario2_variable1_ensemble │   ├── name1_state1_scenario2_variable1.csv │   └── name2_state2_scenario2_variable1.csv └── scenario2_variable2_ensemble ├── name1_state1_scenario2_variable2.csv └── name2_state2_scenario2_variable2.csv ``` --- ## [Visualization Examples](https://github.com/satyarth934/lbnl-climate-resilience/tree/main/examples/climate-resilience/notebooks) The visualization code will be easier to be used in a notebook as inline visualizations can be used. #### [Map visualization notebook](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/notebooks/visualize_example_1.ipynb) Below is a screenshot of the interactive map with the sites marked. ![Map](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/notebooks/sample_map_screenshot.png?raw=true) ![Map Colorbar](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/notebooks/sample_map_colorbar.png?raw=true) #### [Box plot visualization notebook](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/notebooks/visualize_example_3.ipynb) Below is a screenshot of boxplot of annual precipitation in different regions of the United States. ![Boxplot](https://github.com/satyarth934/lbnl-climate-resilience/blob/main/examples/climate-resilience/notebooks/sample_boxplot.png?raw=true) ### Library Features: #### Downloader 1. [Class SiteDownloader](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/downloader.py#L24) member functions: <br> * [download_model_average_daily()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/downloader.py#L108) * [download_historical_daily()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/downloader.py#L159) * [download_historical_monthly()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/downloader.py#L211) * [download_samples()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/downloader.py#L348) #### Preprocessing functions 1. [calculate_Nth_percentile()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L15) 2. [calculate_pr_count_amount()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L102) 3. [calculate_temporal_mean()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L204) 4. [get_climate_ensemble()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L301) 5. [get_per_year_stats()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L359) 6. [get_sub_period_stats()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/preprocess.py#L427) #### Vizualization functions 1. [plot_map()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/visualize.py#L72) 2. [plot_histogram()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/visualize.py#L202) 3. [plot_boxplots()](https://github.com/ALTEMIS-DOE/climate-resilience/blob/main/src/climate_resilience/visualize.py#L262) # Contributors - [Satyarth Praveen](mailto:satyarth@lbl.gov) - [Zexuan Xu](mailto:zexuanxu@lbl.gov) - [Haruko Wainwright](mailto:hmwainwright@lbl.gov)


نیازمندی

مقدار نام
- numpy
- pandas
- seaborn
- matplotlib
- leafmap
- ipyleaflet
- tqdm
- geopandas
- earthengine-api
- eecmip5
- joblib
- scikit-downscale
- probscale


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl climate-resilience-0.4.9:

    pip install climate-resilience-0.4.9.whl


نصب پکیج tar.gz climate-resilience-0.4.9:

    pip install climate-resilience-0.4.9.tar.gz