معرفی شرکت ها


clep-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Hybrid Data and Knowledge Driven Framework for Generating Patient Representations
ویژگی مقدار
سیستم عامل -
نام فایل clep-0.0.2
نام clep
نسخه کتابخانه 0.0.2
نگهدارنده ['Vinay Bharadhwaj']
ایمیل نگهدارنده ['vinay.srinivas.bharadhwaj@scai.fraunhofer.de']
نویسنده Vinay Bharadhwaj
ایمیل نویسنده vinay.srinivas.bharadhwaj@scai.fraunhofer.de
آدرس صفحه اصلی https://github.com/hybrid-kg/clep
آدرس اینترنتی https://pypi.org/project/clep/
مجوز See LICENSE file
<p align="center"> <img src="docs/source/logo.jpg"> </p> <h1 align="center"> CLEP: A Hybrid Data- and Knowledge- Driven Framework for Generating Patient Representations <br/> <a href='https://travis-ci.com/github/hybrid-kg'> <img src="https://travis-ci.com/hybrid-kg/clep.svg?branch=master" /> </a> <a href='https://clep.readthedocs.io/en/latest/?badge=latest'> <img src='https://readthedocs.org/projects/clep/badge/?version=latest' alt='Documentation Status' /> </a> <a href="https://zenodo.org/badge/latestdoi/209278408"> <img src="https://zenodo.org/badge/209278408.svg" alt="DOI"> </a> <a href="https://pypi.org/project/clep/"> <img src="https://img.shields.io/pypi/v/clep" alt="CLEP on PyPI"> </a> <img src="https://img.shields.io/pypi/pyversions/clep" alt="CLEP Python versions"> <a href="https://github.com/hybrid-kg/clep/blob/master/LICENSE"> <img src="https://img.shields.io/pypi/l/clep" alt="CLEP Software License"> </a> </h1> ## Table of Contents * [General Info](#general-info) * [Installation](#installation) * [Documentation](#documentation) * [Input Data](#input-data-formats) * [Usage](#usage) * [Issues](#issues) * [Acknowledgements](#acknowledgements) * [Citation](#citation) * [Disclaimer](#disclaimer) ## General Info CLEP is a framework that contains novel methods for generating patient representations from any patient level data and its corresponding prior knowledge encoded in a knowledge graph. The framework is depicted in the graphic below <p align="center"> <img src="docs/source/framework.jpg"> </p> ## Installation The code can be installed from [PyPI](https://pypi.org/project/clep/) with: ```bash $ pip install clep ``` The most recent code can be installed from the source on [GitHub](https://github.com/hybrid-kg/clep) with: ```bash $ pip install git+https://github.com/hybrid-kg/clep.git ``` For developers, the repository can be cloned from [GitHub](https://github.com/hybrid-kg/clep) and installed in editable mode with: ```bash $ git clone https://github.com/hybrid-kg/clep.git $ cd clep $ pip install -e . ``` ## Documentation Read the [official docs](https://clep.readthedocs.io/en/latest/) for more information. ## Input Data Formats ### Data | Symbol | Sample_1 | Sample_2 | Sample_3 | | ------ | -------- | -------- | -------- | | HGNC_ID_1 | 0.354 | 2.568 | 1.564 | | HGNC_ID_2 | 1.255 | 1.232 | 0.26452 | | HGNC_ID_3 | 3.256 | 1.5 | 1.5462 | **Note:** The data must be in a tab separated file format. ### Design | FileName | Target | | -------- | ------ | | Sample_1 | Abnormal | | Sample_2 | Abnormal | | Sample_3 | Control | **Note:** The data must be in a tab separated file format. ### Knowledge Graph The graph format CLEP can handle is a modified version of the Edge List Format. Which looks as follows: | Source | Relation | Target | | ------ | -------- | ------ | | HGNC_ID_1 | association | HGNC_ID_2 | HGNC_ID_2 | decreases | HGNC_ID_3 | HGNC_ID_3 | increases | HGNC_ID_1 **Note:** The data must be in a tab separated file format & if your knowledge graph does not have relations between the source and the target, just populate the relation column with "No Relation". ## Usage **Note:** These are very basic commands for clep, and the detailed options for each command can be found in the [documentation](#documentation) 1. **Radical Searching** The following command finds the extreme samples with extreme feature values based on the control population. ```bash $ clep sample-scoring radical-search --data <DATA_FILE> --design <DESIGN_FILE> --control Control --threshold 2.5 --control_based --ret_summary --out <OUTPUT_DIR> ``` 2. **Graph Generation** The following command generates the patient-gene network based on the method chosen (Interaction_network). ```bash $ clep embedding generate-network --data <SCORED_DATA_FILE> --method interaction_network --ret_summary --out <OUTPUT_DIR> ``` 3. **Knowledge Graph Embedding** The following command generates the embedding of the network passed to it. ```bash $ clep embedding kge --data <NETWORK_FILE> --design <DESIGN_FILE> --model_config <MODEL_CONFIG.json> --train_size 0.8 --validation_size 0.1 --out <OUTPUT_DIR> ``` 4. **Classification** The following command carries out classification on the given data file for a chosen model (Elastic Net) using a chosen optimizer (Grid Search). ```bash $ clep classify --data <EMBEDDING_FILE> --model elastic_net --optimizer grid_search --out <OUTPUT_DIR> ``` ## Issues If you have difficulties using CLEP, please open an issue at our [GitHub](https://github.com/hybrid-kg/clep) repository. ## Acknowledgements ### Citation If you have found CLEP useful in your work, please consider citing: [**CLEP: A Hybrid Data- and Knowledge- Driven Framework for Generating Patient Representations**](https://doi.org/10.1101/2020.08.20.259226 ).<br /> Bharadhwaj, V. S., Ali, M., Birkenbihl, C., Mubeen, S., Lehmann, J., Hofmann-Apitius, M., Hoyt, C. T., & Domingo-Fernandez, D. (2020).<br /> *bioRxiv*, 2020.08.20.259226. ### Graphics The CLEP logo and framework graphic was designed by Carina Steinborn. ## Disclaimer CLEP is a scientific software that has been developed in an academic capacity, and thus comes with no warranty or guarantee of maintenance, support, or back-up of data.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl clep-0.0.2:

    pip install clep-0.0.2.whl


نصب پکیج tar.gz clep-0.0.2:

    pip install clep-0.0.2.tar.gz