معرفی شرکت ها


cleosim-0.8.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cleo: the Closed-Loop, Electrophysiology, and Optogenetics experiment simulation testbed
ویژگی مقدار
سیستم عامل -
نام فایل cleosim-0.8.0
نام cleosim
نسخه کتابخانه 0.8.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kyle Johnsen
ایمیل نویسنده kyle@kjohnsen.org
آدرس صفحه اصلی https://cleosim.readthedocs.io
آدرس اینترنتی https://pypi.org/project/cleosim/
مجوز MIT
###### Cleo: the Closed-Loop, Electrophysiology, and Optogenetics experiment simulation testbed [![Test and lint](https://github.com/kjohnsen/cleosim/actions/workflows/test.yml/badge.svg)](https://github.com/kjohnsen/cleosim/actions/workflows/test.yml) [![Documentation Status](https://readthedocs.org/projects/cleosim/badge/?version=latest)](https://cleosim.readthedocs.io/en/latest/?badge=latest) <h1> <p align="center"> <img style="display: block; width: 50%;" src="https://user-images.githubusercontent.com/19983357/187561700-100b853a-d226-4039-a580-1d798b00f9e4.png" alt="Cleo: the Closed-Loop, Electrophysiology, and Optogenetics experiment simulation testbed"> </img> </p> </h1> Hello there! Cleo has the goal of bridging theory and experiment for mesoscale neuroscience, facilitating electrode recording, optogenetic stimulation, and closed-loop experiments (e.g., real-time input and output processing) with the [Brian 2](https://brian2.readthedocs.io/en/stable/) spiking neural network simulator. We hope users will find these components useful for prototyping experiments, innovating methods, and testing observations about a hypotheses *in silico*, incorporating into spiking neural network models laboratory techniques ranging from passive observation to complex model-based feedback control. Cleo also serves as an extensible, modular base for developing additional recording and stimulation modules for Brian simulations. This package was developed by [Kyle Johnsen](https://kjohnsen.org) and Nathan Cruzado under the direction of [Chris Rozell](https://siplab.gatech.edu) at Georgia Institute of Technology. <p align="center"> <img style="display: block; width: 90%;" src="https://user-images.githubusercontent.com/19983357/187724696-b880a884-1c32-4bad-8b2c-acdd4add44d0.png" alt="logo"> </img> </p> ## <img align="bottom" src="https://user-images.githubusercontent.com/19983357/167456512-fb10619b-255e-4a53-8ed9-79ae954d3ff4.png" alt="CL icon" > Closed Loop processing Cleo allows for flexible I/O processing in real time, enabling the simulation of closed-loop experiments such as event-triggered or feedback control. The user can also add latency to closed-loop stimulation to study the effects of computation delays. ## <img align="bottom" src="https://user-images.githubusercontent.com/19983357/167461111-b0a3746c-03fa-47b7-a9a9-7b651157044f.png" alt="CL icon" > Electrode recording Cleo provides functions for configuring electrode arrays and placing them in arbitrary locations in the simulation. The user can then specify parameters for probabilistic spike detection or a spike-based LFP approximation developed by [Teleńczuk et al., 2020](https://www.sciencedirect.com/science/article/pii/S0165027020302946). ## <img align="bottom" src="https://user-images.githubusercontent.com/19983357/187728089-62fae854-1d69-4e8f-a597-a25934ca3eaa.png" alt="CL icon" > Optogenetic stimulation By providing an optic fiber-light propagation model, Cleo enables users to flexibly add photostimulation to their model. Both a four-state Markov state model of opsin dynamics is available, as well as a minimal proportional current option for compatibility with simple neuron models. Parameters are provided for the common blue light/ChR2 setup. ## Getting started Just use pip to install&mdash;the name on PyPI is `cleosim`: ``` pip install cleosim ``` Then head to the [overview section of the documentation](https://cleosim.readthedocs.io/en/latest/overview.html) for a more detailed discussion of motivation, structure, and basic usage. ## Related resources Those using Cleo to simulate closed-loop control experiments may be interested in software developed for the execution of real-time, *in-vivo* experiments. Developed by members of [Chris Rozell](https://siplab.gatech.edu)'s and [Garrett Stanley](https://stanley.gatech.edu/)'s labs at Georgia Tech, the [CLOCTools repository](https://cloctools.github.io) can serve these users in two ways: 1. By providing utilities and interfaces with experimental platforms for moving from simulation to reality. 2. By providing performant control and estimation algorithms for feedback control. Although Cleo enables closed-loop manipulation of network simulations, it does not include any advanced control algorithms itself. The `ldsCtrlEst` library implements adaptive linear dynamical system-based control while the `hmm` library can generate and decode systems with discrete latent states and observations. <p align="center"> <img style="display: block; width: 100%;" src="https://user-images.githubusercontent.com/19983357/187723498-f0f03da8-096a-46eb-90df-28da55dce7a0.png" alt="CLOCTools and Cleo"> </img> </p> ### Publications [**CLOC Tools: A Library of Tools for Closed-Loop Neuroscience**](https://github.com/cloctools/tools-for-neuro-control-manuscript)<br> A.A. Willats, M.F. Bolus, K.A. Johnsen, G.B. Stanley, and C.J. Rozell. *In prep*, 2022. [**State-Aware Control of Switching Neural Dynamics**](https://github.com/awillats/state-aware-control)<br> A.A. Willats, M.F. Bolus, C.J. Whitmire, G.B. Stanley, and C.J. Rozell. *In prep*, 2022. [**Closed-Loop Identifiability in Neural Circuits**](https://github.com/awillats/clinc)<br> A. Willats, M. O'Shaughnessy, and C. Rozell. *In prep*, 2022. [**State-space optimal feedback control of optogenetically driven neural activity**](https://www.biorxiv.org/content/10.1101/2020.06.25.171785v2)<br> M.F. Bolus, A.A. Willats, C.J. Rozell and G.B. Stanley. *Journal of Neural Engineering*, 18(3), pp. 036006, March 2021. [**Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo**](https://iopscience.iop.org/article/10.1088/1741-2552/aaa506)<br> M.F. Bolus, A.A. Willats, C.J. Whitmire, C.J. Rozell and G.B. Stanley. *Journal of Neural Engineering*, 15(2), pp. 026011, January 2018.


نیازمندی

مقدار نام
>=2.4,<3.0,!=2.5.0.2 brian2
>=3.4,<4.0 matplotlib
>=1.16,<2.0 numpy
>=1.7.2,<2.0.0 scipy
>=0.2,<0.3 tklfp
- bidict
>=1.4.4,<2.0.0 nptyping


زبان مورد نیاز

مقدار نام
>=3.7,<3.10 Python


نحوه نصب


نصب پکیج whl cleosim-0.8.0:

    pip install cleosim-0.8.0.whl


نصب پکیج tar.gz cleosim-0.8.0:

    pip install cleosim-0.8.0.tar.gz