معرفی شرکت ها


cleanrl-test-1.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features
ویژگی مقدار
سیستم عامل -
نام فایل cleanrl-test-1.1.2
نام cleanrl-test
نسخه کتابخانه 1.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Costa Huang
ایمیل نویسنده costa.huang@outlook.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cleanrl-test/
مجوز MIT
# CleanRL (Clean Implementation of RL Algorithms) [<img src="https://img.shields.io/badge/license-MIT-blue">](https://github.com/vwxyzjn/cleanrl) [![tests](https://github.com/vwxyzjn/cleanrl/actions/workflows/tests.yaml/badge.svg)](https://github.com/vwxyzjn/cleanrl/actions/workflows/tests.yaml) [![docs](https://img.shields.io/github/deployments/vwxyzjn/cleanrl/Production?label=docs&logo=vercel)](https://docs.cleanrl.dev/) [<img src="https://img.shields.io/discord/767863440248143916?label=discord">](https://discord.gg/D6RCjA6sVT) [<img src="https://img.shields.io/youtube/channel/views/UCDdC6BIFRI0jvcwuhi3aI6w?style=social">](https://www.youtube.com/channel/UCDdC6BIFRI0jvcwuhi3aI6w/videos) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Models-Huggingface-F8D521">](https://huggingface.co/cleanrl) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. The highlight features of CleanRL are: * 📜 Single-file implementation * *Every detail about an algorithm variant is put into a single standalone file.* * For example, our `ppo_atari.py` only has 340 lines of code but contains all implementation details on how PPO works with Atari games, **so it is a great reference implementation to read for folks who do not wish to read an entire modular library**. * 📊 Benchmarked Implementation (7+ algorithms and 34+ games at https://benchmark.cleanrl.dev) * 📈 Tensorboard Logging * 🪛 Local Reproducibility via Seeding * 🎮 Videos of Gameplay Capturing * 🧫 Experiment Management with [Weights and Biases](https://wandb.ai/site) * 💸 Cloud Integration with docker and AWS You can read more about CleanRL in our [JMLR paper](https://www.jmlr.org/papers/volume23/21-1342/21-1342.pdf) and [documentation](https://docs.cleanrl.dev/). CleanRL only contains implementations of **online** deep reinforcement learning algorithms. If you are looking for **offline** algorithms, please check out [tinkoff-ai/CORL](https://github.com/tinkoff-ai/CORL), which shares a similar design philosophy as CleanRL. > ℹ️ **Support for Gymnasium**: [Farama-Foundation/Gymnasium](https://github.com/Farama-Foundation/Gymnasium) is the next generation of [`openai/gym`](https://github.com/openai/gym) that will continue to be maintained and introduce new features. Please see their [announcement](https://farama.org/Announcing-The-Farama-Foundation) for further detail. We are migrating to `gymnasium` and the progress can be tracked in [vwxyzjn/cleanrl#277](https://github.com/vwxyzjn/cleanrl/pull/277). > ⚠️ **NOTE**: CleanRL is *not* a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's varaint or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have do a lot of subclassing like sometimes in modular DRL libraries). ## Get started Prerequisites: * Python >=3.7.1,<3.10 (not yet 3.10) * [Poetry 1.2.1+](https://python-poetry.org) To run experiments locally, give the following a try: ```bash git clone https://github.com/vwxyzjn/cleanrl.git && cd cleanrl poetry install # alternatively, you could use `poetry shell` and do # `python run cleanrl/ppo.py` poetry run python cleanrl/ppo.py \ --seed 1 \ --env-id CartPole-v0 \ --total-timesteps 50000 # open another temrminal and enter `cd cleanrl/cleanrl` tensorboard --logdir runs ``` To use experiment tracking with wandb, run ```bash wandb login # only required for the first time poetry run python cleanrl/ppo.py \ --seed 1 \ --env-id CartPole-v0 \ --total-timesteps 50000 \ --track \ --wandb-project-name cleanrltest ``` To run training scripts in other games: ``` poetry shell # classic control python cleanrl/dqn.py --env-id CartPole-v1 python cleanrl/ppo.py --env-id CartPole-v1 python cleanrl/c51.py --env-id CartPole-v1 # atari poetry install --with atari python cleanrl/dqn_atari.py --env-id BreakoutNoFrameskip-v4 python cleanrl/c51_atari.py --env-id BreakoutNoFrameskip-v4 python cleanrl/ppo_atari.py --env-id BreakoutNoFrameskip-v4 # NEW: 3-4x side-effects free speed up with envpool's atari (only available to linux) poetry install --with envpool python cleanrl/ppo_atari_envpool.py --env-id BreakoutNoFrameskip-v4 # Learn Pong-v5 in ~5-10 mins # Side effects such as lower sample efficiency might occur poetry run python ppo_atari_envpool.py --clip-coef=0.2 --num-envs=16 --num-minibatches=8 --num-steps=128 --update-epochs=3 # pybullet poetry install --with pybullet python cleanrl/td3_continuous_action.py --env-id MinitaurBulletDuckEnv-v0 python cleanrl/ddpg_continuous_action.py --env-id MinitaurBulletDuckEnv-v0 python cleanrl/sac_continuous_action.py --env-id MinitaurBulletDuckEnv-v0 # procgen poetry install --with procgen python cleanrl/ppo_procgen.py --env-id starpilot python cleanrl/ppg_procgen.py --env-id starpilot # ppo + lstm python cleanrl/ppo_atari_lstm.py --env-id BreakoutNoFrameskip-v4 python cleanrl/ppo_memory_env_lstm.py ``` You may also use a prebuilt development environment hosted in Gitpod: [![Open in Gitpod](https://gitpod.io/button/open-in-gitpod.svg)](https://gitpod.io/#https://github.com/vwxyzjn/cleanrl) ## Algorithms Implemented | Algorithm | Variants Implemented | | ----------- | ----------- | | ✅ [Proximal Policy Gradient (PPO)](https://arxiv.org/pdf/1707.06347.pdf) | [`ppo.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppopy) | | | [`ppo_atari.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_ataripy) | | [`ppo_continuous_action.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_continuous_action.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy) | | [`ppo_atari_lstm.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_lstm.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_lstmpy) | | [`ppo_atari_envpool.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpoolpy) | | [`ppo_atari_envpool_xla_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_xla_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_xla_jaxpy) | | [`ppo_atari_envpool_xla_jax_scan.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_xla_jax_scan.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_envpool_xla_jax_scanpy)) | | [`ppo_procgen.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_procgen.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_procgenpy) | | [`ppo_atari_multigpu.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_multigpu.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_atari_multigpupy) | | [`ppo_pettingzoo_ma_atari.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_pettingzoo_ma_atari.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_pettingzoo_ma_ataripy) | | [`ppo_continuous_action_isaacgym.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_continuous_action_isaacgym/ppo_continuous_action_isaacgym.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_action_isaacgympy) | ✅ [Deep Q-Learning (DQN)](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf) | [`dqn.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py), [docs](https://docs.cleanrl.dev/rl-algorithms/dqn/#dqnpy) | | | [`dqn_atari.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py), [docs](https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_ataripy) | | | [`dqn_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_jaxpy) | | | [`dqn_atari_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_atari_jaxpy) | | ✅ [Categorical DQN (C51)](https://arxiv.org/pdf/1707.06887.pdf) | [`c51.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51.py), [docs](https://docs.cleanrl.dev/rl-algorithms/c51/#c51py) | | | [`c51_atari.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_atari.py), [docs](https://docs.cleanrl.dev/rl-algorithms/c51/#c51_ataripy) | | | [`c51_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/c51/#c51_jaxpy) | | | [`c51_atari_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/c51_atari_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/c51/#c51_atari_jaxpy) | | ✅ [Soft Actor-Critic (SAC)](https://arxiv.org/pdf/1812.05905.pdf) | [`sac_continuous_action.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py), [docs](https://docs.cleanrl.dev/rl-algorithms/sac/#sac_continuous_actionpy) | | ✅ [Deep Deterministic Policy Gradient (DDPG)](https://arxiv.org/pdf/1509.02971.pdf) | [`ddpg_continuous_action.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ddpg/#ddpg_continuous_actionpy) | | | [`ddpg_continuous_action_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ddpg/#ddpg_continuous_action_jaxpy) | ✅ [Twin Delayed Deep Deterministic Policy Gradient (TD3)](https://arxiv.org/pdf/1802.09477.pdf) | [`td3_continuous_action.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action.py), [docs](https://docs.cleanrl.dev/rl-algorithms/td3/#td3_continuous_actionpy) | | | [`td3_continuous_action_jax.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/td3_continuous_action_jax.py), [docs](https://docs.cleanrl.dev/rl-algorithms/td3/#td3_continuous_action_jaxpy) | | ✅ [Phasic Policy Gradient (PPG)](https://arxiv.org/abs/2009.04416) | [`ppg_procgen.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppg_procgen.py), [docs](https://docs.cleanrl.dev/rl-algorithms/ppg/#ppg_procgenpy) | | ✅ [Random Network Distillation (RND)](https://arxiv.org/abs/1810.12894) | [`ppo_rnd_envpool.py`](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_rnd_envpool.py), [docs](/rl-algorithms/ppo-rnd/#ppo_rnd_envpoolpy) | ## Open RL Benchmark To make our experimental data transparent, CleanRL participates in a related project called [Open RL Benchmark](https://github.com/openrlbenchmark/openrlbenchmark), which contains tracked experiments from popular DRL libraries such as ours, [Stable-baselines3](https://github.com/DLR-RM/stable-baselines3), [openai/baselines](https://github.com/openai/baselines), [jaxrl](https://github.com/ikostrikov/jaxrl), and others. Check out https://benchmark.cleanrl.dev/ for a collection of Weights and Biases reports showcasing tracked DRL experiments. The reports are interactive, and researchers can easily query information such as GPU utilization and videos of an agent's gameplay that are normally hard to acquire in other RL benchmarks. In the future, Open RL Benchmark will likely provide an dataset API for researchers to easily access the data (see [repo](https://github.com/openrlbenchmark/openrlbenchmark)). ![](docs/static/o1.png) ![](docs/static/o2.png) ![](docs/static/o3.png) ## Support and get involved We have a [Discord Community](https://discord.gg/D6RCjA6sVT) for support. Feel free to ask questions. Posting in [Github Issues](https://github.com/vwxyzjn/cleanrl/issues) and PRs are also welcome. Also our past video recordings are available at [YouTube](https://www.youtube.com/watch?v=dm4HdGujpPs&list=PLQpKd36nzSuMynZLU2soIpNSMeXMplnKP&index=2) ## Citing CleanRL If you use CleanRL in your work, please cite our technical [paper](https://www.jmlr.org/papers/v23/21-1342.html): ```bibtex @article{huang2022cleanrl, author = {Shengyi Huang and Rousslan Fernand Julien Dossa and Chang Ye and Jeff Braga and Dipam Chakraborty and Kinal Mehta and João G.M. Araújo}, title = {CleanRL: High-quality Single-file Implementations of Deep Reinforcement Learning Algorithms}, journal = {Journal of Machine Learning Research}, year = {2022}, volume = {23}, number = {274}, pages = {1--18}, url = {http://jmlr.org/papers/v23/21-1342.html} } ```


نیازمندی

مقدار نام
>=2.10.0,<3.0.0 tensorboard
>=0.13.6,<0.14.0 wandb
==0.23.1 gym
>=1.12.1 torch
==1.2.0 stable-baselines3
>=0.26.3,<0.27.0 gymnasium
>=1.0.3,<2.0.0 moviepy
==2.1.0 pygame
>=0.11.1,<0.12.0 huggingface-hub
==0.7.4 ale-py
>=0.4.2,<0.5.0 AutoROM[accept-rom-license]
>=4.6.0.66,<5.0.0.0 opencv-python
==3.1.8 pybullet
>=0.10.7,<0.11.0 procgen
>=7.1.3,<8.0.0 pytest
>=2.2,<3.0 mujoco
>=2.14.1,<3.0.0 imageio
>=2.1.6,<3.0.0 free-mujoco-py
>=8.4.3,<9.0.0 mkdocs-material
>=0.7.0,<0.8.0 markdown-include
>=0.3.17,<0.4.0 jax
>=0.3.15,<0.4.0 jaxlib
>=0.6.0,<0.7.0 flax
>=3.0.1,<4.0.0 optuna
>=0.7.2,<0.8.0 optuna-dashboard
<12.0 rich
>=0.7.1,<0.8.0 envpool
==1.18.1 PettingZoo
==3.4.0 SuperSuit
==0.1.11 multi-agent-ale-py
>=1.24.70,<2.0.0 boto3
>=1.25.71,<2.0.0 awscli
>=0.1.0,<0.2.0 shimmy
>=1.0.8,<2.0.0 dm-control


زبان مورد نیاز

مقدار نام
>=3.7.1,<3.10 Python


نحوه نصب


نصب پکیج whl cleanrl-test-1.1.2:

    pip install cleanrl-test-1.1.2.whl


نصب پکیج tar.gz cleanrl-test-1.1.2:

    pip install cleanrl-test-1.1.2.tar.gz