معرفی شرکت ها


clean-text-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Functions to preprocess and normalize text.
ویژگی مقدار
سیستم عامل -
نام فایل clean-text-0.6.0
نام clean-text
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Johannes Filter
ایمیل نویسنده hi@jfilter.de
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/clean-text/
مجوز Apache-2.0
# `clean-text` [![Build Status](https://img.shields.io/github/workflow/status/jfilter/clean-text/Test)](https://github.com/jfilter/clean-text/actions/workflows/test.yml) [![PyPI](https://img.shields.io/pypi/v/clean-text.svg)](https://pypi.org/project/clean-text/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/clean-text.svg)](https://pypi.org/project/clean-text/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/clean-text)](https://pypistats.org/packages/clean-text) User-generated content on the Web and in social media is often dirty. Preprocess your scraped data with `clean-text` to create a normalized text representation. For instance, turn this corrupted input: ```txt A bunch of \\u2018new\\u2019 references, including [Moana](https://en.wikipedia.org/wiki/Moana_%282016_film%29). »Yóù àré rïght &lt;3!« ``` into this clean output: ```txt A bunch of 'new' references, including [moana](<URL>). "you are right <3!" ``` `clean-text` uses [ftfy](https://github.com/LuminosoInsight/python-ftfy), [unidecode](https://github.com/takluyver/Unidecode) and numerous hand-crafted rules, i.e., RegEx. ## Installation To install the GPL-licensed package [unidecode](https://github.com/takluyver/Unidecode) alongside: ```bash pip install clean-text[gpl] ``` You may want to abstain from GPL: ```bash pip install clean-text ``` NB: This package is named `clean-text` and not `cleantext`. If [unidecode](https://github.com/takluyver/Unidecode) is not available, `clean-text` will resort to Python's [unicodedata.normalize](https://docs.python.org/3.7/library/unicodedata.html#unicodedata.normalize) for [transliteration](https://en.wikipedia.org/wiki/Transliteration). Transliteration to closest ASCII symbols involes manually mappings, i.e., `ê` to `e`. `unidecode`'s mapping is superiour but unicodedata's are sufficent. However, you may want to disable this feature altogether depending on your data and use case. To make it clear: There are **inconsistencies** between processing text with or without `unidecode`. ## Usage ```python from cleantext import clean clean("some input", fix_unicode=True, # fix various unicode errors to_ascii=True, # transliterate to closest ASCII representation lower=True, # lowercase text no_line_breaks=False, # fully strip line breaks as opposed to only normalizing them no_urls=False, # replace all URLs with a special token no_emails=False, # replace all email addresses with a special token no_phone_numbers=False, # replace all phone numbers with a special token no_numbers=False, # replace all numbers with a special token no_digits=False, # replace all digits with a special token no_currency_symbols=False, # replace all currency symbols with a special token no_punct=False, # remove punctuations replace_with_punct="", # instead of removing punctuations you may replace them replace_with_url="<URL>", replace_with_email="<EMAIL>", replace_with_phone_number="<PHONE>", replace_with_number="<NUMBER>", replace_with_digit="0", replace_with_currency_symbol="<CUR>", lang="en" # set to 'de' for German special handling ) ``` Carefully choose the arguments that fit your task. The default parameters are listed above. You may also only use specific functions for cleaning. For this, take a look at the [source code](https://github.com/jfilter/clean-text/blob/main/cleantext/clean.py). ### Supported languages So far, only English and German are fully supported. It should work for the majority of western languages. If you need some special handling for your language, feel free to contribute. 🙃 ### Using `clean-text` with `scikit-learn` There is also **scikit-learn** compatible API to use in your pipelines. All of the parameters above work here as well. ```bash pip install clean-text[gpl,sklearn] pip install clean-text[sklearn] ``` ```python from cleantext.sklearn import CleanTransformer cleaner = CleanTransformer(no_punct=False, lower=False) cleaner.transform(['Happily clean your text!', 'Another Input']) ``` ## Development [Use poetry.](https://python-poetry.org/) ## Contributing If you have a **question**, found a **bug** or want to propose a new **feature**, have a look at the [issues page](https://github.com/jfilter/clean-text/issues). **Pull requests** are especially welcomed when they fix bugs or improve the code quality. If you don't like the output of `clean-text`, consider adding a [test](https://github.com/jfilter/clean-text/tree/main/tests) with your specific input and desired output. ## Related Work ### Generic text cleaning packages - https://github.com/pudo/normality - https://github.com/davidmogar/cucco - https://github.com/lyeoni/prenlp - https://github.com/s/preprocessor - https://github.com/artefactory/NLPretext - https://github.com/cbaziotis/ekphrasis ### Full-blown NLP libraries with some text cleaning - https://github.com/chartbeat-labs/textacy - https://github.com/jbesomi/texthero ### Remove or replace strings - https://github.com/vi3k6i5/flashtext - https://github.com/ddelange/retrie ### Detect dates - https://github.com/scrapinghub/dateparser ### Clean massive Common Crawl data - https://github.com/facebookresearch/cc_net ## Acknowledgements Built upon the work by [Burton DeWilde](https://github.com/bdewilde) for [Textacy](https://github.com/chartbeat-labs/textacy). ## License Apache


نیازمندی

مقدار نام
>=1.0.0,<2.0.0 emoji
>=6.0,<7.0 ftfy
>=1.0.0,<2.0.0) pandas
>=1.0.0,<2.0.0) scikit-learn
>=1.1.1,<2.0.0) unidecode


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl clean-text-0.6.0:

    pip install clean-text-0.6.0.whl


نصب پکیج tar.gz clean-text-0.6.0:

    pip install clean-text-0.6.0.tar.gz