معرفی شرکت ها


classify-chimeras-2.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Chimera states in nonlocally-coupled phase oscillators
ویژگی مقدار
سیستم عامل -
نام فایل classify-chimeras-2.0.1
نام classify-chimeras
نسخه کتابخانه 2.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Felix P. Kemeth
ایمیل نویسنده felix@kemeth.de
آدرس صفحه اصلی http://github.com/fkemeth/classify_chimeras
آدرس اینترنتی https://pypi.org/project/classify-chimeras/
مجوز GPL-3.0
INSTALLATION --------- Via pip: `pip install classify_chimeras` Via source git clone https://github.com/fkemeth/classify_chimeras cd classify_chimeras pip install . DOCUMENTATION --------- This python package contains functions to classify chimera states, non-linear hybrid states of coexisting coherence and incoherence. In particular, this package offers three functions, following the paper "A classification scheme for chimera states" (http://dx.doi.org/10.1063/1.4959804) - `spatial(data, boundaries='no-flux', phases=False, nbins=100)` `data` must be a TxN or a TxN1xN2 numpy matrix (either real or complex). The function `spatial()` applies the discrete Laplacian on the data, and returns the coherent fraction at each time step. `boundaries` specifies the boundary conditions under which the data was generated. Set `phases=True` if A contains phases only. `nbins` specifies the number of bins of the histograms which are generated. - `globaldist(data, nbins=100, phases=False, num_coarse=1500)` `data` must be a TxN numpy matrix. The function `globaldist()` calculates all pariwise Euclidean distances between all data points at each time step, and returns the coherent fraction of A at each time step. `nbins` specifies the number of bins of the histograms. Set `phases=True` if `data` contains phases only. `num_coarse` is a threshold above which the data is coarsed due to memory limitations. This can be increased, but may lead to long calculation times or memory errors. - `temporal(data, nbins=100, phases=False, num_coarse=1500)` A must be a TxN or TxN1xN2 numpy matrix. The function `temporal()` calculates all pairwise temporal correlation coefficients between the T-long timeseries of A. It returns a hisogram, with the square root of the last bin indicating the amount of temporarily correlated time series. `nbins` specifies the number of bins of the histograms. Set `phases=True` if `data` contains phases only. `num_coarse` is a threshold above which the data is coarsed due to memory limitations. This can be increased, but may lead to long calculation times or memory errors. ISSUES --------- For questions, please contact (<felix@kemeth.de>), or visit [the GitHub repo](https://github.com/fkemeth/classify_chimeras). EXAMPLE --------- As an illustrative example, we use a chimer state observed by Kuramoto and Battogtokh in "Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators" (2002), in Nonlinear Phenom. Complex Syst. We suppose that we have the phases of this chimera state in a numpy matrix A. import matplotlib.pyplot as plt from kuramoto_chimera import integrate from classify_chimeras import spatial, temporal # Integrate Kuramoto phase oscillator system with nonlocal coupling. data_dict = integrate() # Plot a snapshot of the data matrix A fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data_dict["xx"], data_dict["data"][-1]) ax.set_xlabel('x') plt.show() ![Snapshot of the phases](/images/kuramoto.jpg) # Obtain the fraction of spatially coherent oscillators g_zero = spatial(data_dict["data"], boundaries='periodic', phases=True) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(data_dict["t_eval"], g_zero) ax.set_xlabel('t') ax.set_ylim((0, 1.0)) plt.show() ![Fraction of spatially coherent oscillators](/images/kuramoto_g0.jpg) # Obtain the fraction of temporarily correlated oscillators temporal_coherence = temporal(data_dict["data"], phases=True) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(temporal_coherence) ax.set_ylim((0, 0.3)) plt.show() ![Distribution of temporal correlation coefficients](/images/kuramoto_h.jpg) Changelog v.2.0.0 --------- - Refactored code for the correlation measures. - Restructured code to confirm to pypi package layout. - Use random subset of grid points when coarse graining data. - Adjusted upper bound in temporal correlation histogram to 1+epsilon. - Included example using kuramoto_chimera package. - Added notebook example. - Added unit tests. LICENCE --------- This work is licenced under GNU General Public License v3. Please cite "A classification scheme for chimera states" F.P. Kemeth et al. (http://dx.doi.org/10.1063/1.4959804) if you use this package for publications.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl classify-chimeras-2.0.1:

    pip install classify-chimeras-2.0.1.whl


نصب پکیج tar.gz classify-chimeras-2.0.1:

    pip install classify-chimeras-2.0.1.tar.gz