معرفی شرکت ها


classifier-calibration-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package to measure the calibration of probabilistic classifiers
ویژگی مقدار
سیستم عامل -
نام فایل classifier-calibration-0.1.6
نام classifier-calibration
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Conor Walsh
ایمیل نویسنده conorwalsh206@gmail.com
آدرس صفحه اصلی https://github.com/conor-walsh-cork/classifier_calibration
آدرس اینترنتی https://pypi.org/project/classifier-calibration/
مجوز MIT license
# classifier-calibration Measure the calibration of probabilistic classifers. For some forecasting applications, we are more interested in predicting the probability of an event occurring, than predicting which event will occur (the label). In this case we use probabilistic classifiers, to classify data points as having a certain probability of belonging to each class. Examples of such applications include weather forecasting (e.g. percentage chance of rain), medical diagnosis of disease (e.g. percentage risk of cancer) among others. The module calibration_error has the attribute classwise_ece that calculates the classwise expected calibration error (as defined in Kull et al. (2019)) of a set of predictions given the predicted probabilities and the true labels. The error can be calculated for any number of classes in a multi-class classification problem. The input includes a k-dimensional array where the $i^{th}$ column contains, for each data point, the predicted probability of the point belonging to class $i$ for $i = 1,2,...,k$. This is the format in which sklearn's predict_proba() method returns the array of predicted probabilities. Labels should be numerical, and should correspond to each class $i$ for $i = 1,2,...,k$. classwise_ece() returns the classwise expected calibration error which is a loss bounded between 0 and 1. This loss is the average across all classes, of the weighted average deviation from the expected rate of occurrence of the given class. If we multiply this loss by 100, we can think of the result as the percentage by which the forecasting model's predicted probability deviates from the true probability, on average. # Example Usage We demonstrate this calculation for the binary and multiclass problems, using common sklearn classifiers. ``` import sklearn.datasets import sklearn.linear_model import sklearn.ensemble import pandas as pd import numpy as np from classifier_calibration.calibration_error import classwise_ece ``` ### Binary classification ``` # Make classification data X, Y = sklearn.datasets.make_classification(n_samples=100000,n_informative=6,n_classes=2) clf = sklearn.linear_model.LogisticRegression().fit(X,Y) predicted_probabilities = clf.predict_proba(X) # calculate the classwise expected calibration error classwise_expected_calibration_error = classwise_ece(pred_probs=predicted_probabilities,labels=Y) ``` ### Multi-class classification We compare calibration of random forest and logistic regression classifiers for the 3-class classification problem. We also return the distribution of weights across bins for each class. That is, we split the interval [0,1] into bins of equal length (num_bins=20 by default but can be specified in classwise_ece()) and group the predicted probabilities into these bins. The proportion of data points associated with each bin (for a given class) is the called the weight of the bin. ``` # Make classification data num_classes = 3 X, Y = sklearn.datasets.make_classification(n_samples=100000,n_informative=6,n_classes=num_classes) lr = sklearn.linear_model.LogisticRegression().fit(X,Y) rf = sklearn.ensemble.RandomForestClassifier().fit(X,Y) lr_predicted_probabilities = lr.predict_proba(X) rf_predicted_probabilities = rf.predict_proba(X) # calculate the classwise expected calibration error lr_classwise_expected_calibration_error, lr_bin_weights = classwise_ece(pred_probs=lr_predicted_probabilities,labels=Y,return_weights=True) rf_classwise_expected_calibration_error, rf_bin_weights = classwise_ece(pred_probs=rf_predicted_probabilities,labels=Y,return_weights=True) print(round(100*lr_classwise_expected_calibration_error,2),'%',round(100*rf_classwise_expected_calibration_error,2),'%') # print distribution of weights across bins for each class' set of predictions for k in range(num_classes): print('Logistic regression bin weights for class',k,'predictions:') print(lr_bin_weights[k]) print('Random forest bin weights for class',k,'predictions:') print(rf_bin_weights[k]) print() ```


نیازمندی

مقدار نام
- pandas
- numpy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl classifier-calibration-0.1.6:

    pip install classifier-calibration-0.1.6.whl


نصب پکیج tar.gz classifier-calibration-0.1.6:

    pip install classifier-calibration-0.1.6.tar.gz