معرفی شرکت ها


cinful-1.2.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

cinful: A fully automated pipeline to identify microcinswith associated immunity proteins and export machinery
ویژگی مقدار
سیستم عامل -
نام فایل cinful-1.2.6
نام cinful
نسخه کتابخانه 1.2.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Aaron Feller
ایمیل نویسنده aaronleefeller@gmail.com
آدرس صفحه اصلی https://github.com/wilkelab/cinful
آدرس اینترنتی https://pypi.org/project/cinful/
مجوز GPL-3
# *cinful*: an in-silico microcin identification pipeline *cinful* reads a directory of genome data and identifies class II microcins using a combination of HMM and BLAST. It has functionality that identifies the associated export machinery (MFP & PCAT) and putative immunity protein. Publication of this work is forthcoming and will be cited here. *cinful* is developed by the [Wilke lab](https://wilkelab.org/) at the [Department of Integrative Biology](https://integrativebio.utexas.edu/) in collaboration with the [Davies lab](https://bwdaviesutaustin.org/) at the [Department of Molecular Biosciences](https://molecularbiosci.utexas.edu/), both at [The University of Texas at Austin](https://www.utexas.edu/). ## Installation There are two methods for installation; one uses pip and should be more user friendly. ## Installation from PyPI (recommended) The following includes steps to install dependencies. ### Setup conda environment (includes python and pip): ```bash $ conda create --name <your-env-name> python=3.8.13 pip $ conda activate <your-env-name> ``` ### Install other dependencies: ```bash $ conda install mamba -c conda-forge $ pip install cinful $ cinful_init ``` #### Dependencies installed with $ cinful_init * seqkit=0.15.0 * mafft=7.475 * hmmer=3.3.1 * blast=2.9.0 * diamond=2.0.11 * pandas=1.2.4 * numpy=1.19.2 * biopython=1.76 * snakemake=6.3.0 * prodigal=2.6.3 * pyhmmer=0.3.0 ##### PyPI dependencies: * pyTMHMM==1.3.2 * seqhash==1.0.0 * blake3==0.2.0 If installed properly, running `cinful -h` will produce the following output: ``` cinful optional arguments: -h, --help show this help message and exit -d DIRECTORY, --directory DIRECTORY Must be a directory containing uncompressed FASTA formatted genome assemblies with .fna extension. Files within nested directories are fine -o OUTDIR, --outDir OUTDIR This directory will contain all output files. It will be nested under the input directory. -t THREADS, --threads THREADS This specifies how many threads to allow snakemake to have access to for parallelization ``` ## Installation test I am working on a test to verify installation. As a workaround, you are able to download a test genome that contains microcin, MFP, PCAT, and immunity protein from https://github.com/wilkelab/cinful/blob/main/test/. Once you've downloaded the test file, you can run *cinful* on the contents and compare the output to the results stored in the directory cinful_out. ## Usage notes *cinful* takes a directory containing genome assemblies as input. All assemblies in the directory must contain the extension `.fna`. If they end in a different extension, they will be ignored. Nested directories will explored recursively, and all `\*.fna` files will be analyzed by *cinful*. Nested directories can be a good way to explore output, as the directory tree will be stored as a part of the *cinful_id* in the output files. Snakemake is the core workflow management used by cinful -- the main snakefile is located under cinful/Snakefile, which issues subroutines located in cinful/rules. *cinful* has been tested on Linux and MacOS. ## Workflow With *cinful*, the following workflow will be executed. ![cinful](figures/cinful_workflow.inkscape.svg) ###### Three output directories will be generated in your --directory <assembly_directory> under a directory called cinful_out (or an -outDir of your choosing): **00_dbs** * This is the initial location of the databases of verified microcins, CvaB, and immunity proteins. **01_orf_homology** * Prodigal will generate Open Reading Frame (ORF) predictions for the input assemblies * Those ORFs will be searched against the previously mentioned databases **02_homology_results** * The results from all the homology searches will be merged here **03_best_hits** * The top hits from the homology results will be placed here ## Running from source (not recommended) Clone this repository: ```bash git clone https://github.com/wilkelab/cinful.git ``` All software dependencies needed to run *cinful* are available through conda and are specified in `cinful_conda.yml`, the following helper script can be used to generate the *cinful* conda environment `scripts/build_conda_env.sh`, to run this script, you will need to have conda installed, as well as mamba (which helps speed up installation). To install mamba, use the following command: ```bash conda install mamba -c conda-forge ``` To build the environment, run: ```bash bash env/build_conda_env.sh ``` Once setup is complete, you can activate the environment with: ```bash conda activate cinful ``` There is a test dataset with an _E. coli_ genome assembly to test *cinful* on under `test/colcinV_Ecoli`, you can run *cinful* on this dataset by running the following from the initial *cinful* directory: ```bash python path/to/cinful.py -d <genomes_directory> -o <output_directory> -t <threads> ``` # Contributing *cinful* currently exists as a wrapper to a series of snakemake subroutines, so adding functionality to it is as simple as adding additional subroutines. If there are any subroutines that you see are needed, feel free to raise an issue, and I will be glad to guide you through the process of making a pull request to add that feature. Additionally, since *cinful* primarily works through snakemake, it can also be used by simply running the snakefiles separately, so if additional configuration is needed, in terms of the types of input files, this can probably be achieved that way.


نحوه نصب


نصب پکیج whl cinful-1.2.6:

    pip install cinful-1.2.6.whl


نصب پکیج tar.gz cinful-1.2.6:

    pip install cinful-1.2.6.tar.gz