معرفی شرکت ها


cinet-0.0.16


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Scikit-Learn interface for CINET PyTorch siamese neural network
ویژگی مقدار
سیستم عامل -
نام فایل cinet-0.0.16
نام cinet
نسخه کتابخانه 0.0.16
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Christopher Eeles
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cinet/
مجوز MIT
# cinet Scikit-Learn interface for CINET PyTorch siamese neural network. DeepCINET is a deep "siamese" neural network architecture, where a contrastive loss function is used to learn feature weights that maximally discriminate relative response/target between valid pairs of training data. A hyper-parameter, delta, is used to define what a valid pair is by setting a minimum difference in response/target value for pairs to be included in model training, with the intuition that useful weights cannot be learned from samples that are too close together in response-space. Concordance index is then used to assess rank accuracy. Concordance index was chosen because it is a non-parametric statistic that does not make assumptions on data distributon or homoscedasticity. It can detect non-linear, monotonic associations. ECINET is a one-dimensional neural network, which makes it essentially a linear regression model with regularization. It is comparable to model architectures like ElasticNet. It can be used to assess if improved performance is delivered by the added complexity of DeepCINET. Note, however, that siamese networks go hand-in-hand with few shot learning approaches. The idea is that features learned from large data in CINET can then be applied to learning done on smaller real-world data in a transfer learning approach. An initial implementation, trained on gene set expression data from cancer cell lines and meant to predict drug sensitivity rank, is available on the BHKLab's public GitHub at https://github.com/bhklab/cinet. ## Installation ```bash $ pip3 install cinet ``` ## Usage CINET can be used like any other Scikit-Learn model. ```python # Import CINET from cinet import * # Create a DeepCINET model model = deepCINET() # Or, create an ECINET model model = ECINET() # Standard Scikit-Learn syntax model.fit(X,y) model.predict(X) model.score(X,y) # You can use it with things like GridSearchCV easily GridSearchCV(deepCINET(device='cpu', batch_size=2**12), param_grid, refit = True, verbose = 3,n_jobs=3) ``` ## Contributing Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms. ## License `cinet` was created by Kevin Tabatabaei and Christopher Eeles. It is licensed under the terms of the MIT license. ## Credits `cinet` was created with [`cookiecutter`](https://cookiecutter.readthedocs.io/en/latest/) and the `py-pkgs-cookiecutter` [template](https://github.com/py-pkgs/py-pkgs-cookiecutter).


نیازمندی

مقدار نام
>=0.5.0,<0.6.0 ConfigSpace
>=0.27.1,<0.28.0 lifelines
>=1.23.0,<2.0.0 numpy
>=1.4.3,<2.0.0 pandas
>=1.6.4,<2.0.0 pytorch-lightning
>=1.13.0,<2.0.0 ray
>=0.0,<0.1 sklearn
>=0.8.10,<0.9.0 tabulate
>=1.11.0,<2.0.0 torch


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl cinet-0.0.16:

    pip install cinet-0.0.16.whl


نصب پکیج tar.gz cinet-0.0.16:

    pip install cinet-0.0.16.tar.gz