معرفی شرکت ها


cid-cmd-0.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cloud Intelligence Dashboards deployment helper tool
ویژگی مقدار
سیستم عامل -
نام فایل cid-cmd-0.2.9
نام cid-cmd
نسخه کتابخانه 0.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده AWS CUDOS Team
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/aws-samples/aws-cudos-framework-deployment
آدرس اینترنتی https://pypi.org/project/cid-cmd/
مجوز MIT
# Cloud Intelligence Dashboards (CUDOS Framework) [![PyPI version](https://badge.fury.io/py/cid-cmd.svg)](https://badge.fury.io/py/cid-cmd) ## Welcome to Cloud Intelligence Dashboards (CUDOS Framework) automation repository This repository contains CloudFormation templates and Command Line tool (cid-cmd) for managing various dashboards provided in AWS Well Architected LAB [Cloud Intelligence Dashboards](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/). There are several ways we can manage dashboards: 1. CloudFormation Template (using cid-cmd tool in lambda) 2. Using cid-cmd tool from command line We recommend cid-cmd tool via [AWS CloudShell](https://console.aws.amazon.com/cloudshell/home). ## Supported dashboards --- | Dashboard documentation | Demo URL | Prerequisites URL | | --- | --- | --- | | [CUDOS Dashboard](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/2b_cudos_dashboard/) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=cudos) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/alternative_deployments/) | | [Cost Intelligence Dashboard](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/2a_cost_intelligence_dashboard/) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=cost_intelligence_dashboard) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/alternative_deployments/) | | [Trusted Advisor Organisation (TAO) Dashboard](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/trusted-advisor-dashboards/) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=e1799d0d-166c-4e61-8fa6-5c927f70c799) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/trusted-advisor-dashboards) | | [Trends Dashboard](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/3_additional_dashboards/#trends-dashboard) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=trends-dashboard) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards) | | [KPI Dashboard](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/deploy_dashboards/) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=kpi) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/cost-usage-report-dashboards/dashboards/alternative_deployments/) | | [Compute Optimizer Dashboard](https://www.wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/compute-optimizer-dashboards/) | [demo](https://d1s0yx3p3y3rah.cloudfront.net/anonymous-embed?dashboard=compute-optimizer-dashboard) | [link](https://wellarchitectedlabs.com/cost/200_labs/200_cloud_intelligence/compute-optimizer-dashboards) | ## Before you start 1. :heavy_exclamation_mark: Complete the prerequisites for respective dashboard (see above). 2. :heavy_exclamation_mark: [Specifying a Query Result Location Using a Workgroup](https://docs.aws.amazon.com/athena/latest/ug/querying.html#query-results-specify-location-workgroup) 3. :heavy_exclamation_mark: Make sure QuickSight [Enterprise edition](https://aws.amazon.com/premiumsupport/knowledge-center/quicksight-enterprise-account/) is activated. ## How to use for Dasbhoard Deployment 1. Launch [AWS CloudShell](https://console.aws.amazon.com/cloudshell/home) or your local shell Automation requires Python 3 2. Make sure you have latest pip package installed ```bash python3 -m ensurepip --upgrade ``` 4. Install CID Python automation PyPI package ```bash pip3 install --upgrade cid-cmd ``` 5. Deploy the Dashboards ```bash cid-cmd deploy ``` ### Demo [![asciicast](https://asciinema.org/a/467770.svg)](https://asciinema.org/a/467770) ## Other Commands #### Update existing Dashboards Update only Dashboard ```bash cid-cmd update ``` Update dashboard and all dependenies (Datasets and Athena View). WARNING: this will overide any customization of SQL files and Datasets. ```bash cid-cmd update --force --recursive ``` #### Show Dashboard status Show dashboards status ```bash cid-cmd status ``` #### Share QuickSight resources ```bash cid-cmd share ``` #### Delete Dashboard and all dependencies unused by other Delete Dashboards and all dependencies unused by other CID-managed dashboards.(including QuickSight datasets, Athena views and tables) ```bash cid-cmd delete ``` #### Delete Command Options: ``` --dashboard-id TEXT QuickSight dashboard id --athena-database TEXT Athena database ``` #### Export The command `export` lets you download or share a customized dashboard with another AWS Account. It takes the QuickSight Analysis as an input and generates all the assets needed to deploy your Analysis into another AWS Account. This command will generate a yaml file with a description of the Dashboard and all required Datasets. Also this command generates a QuickSight Template in the current AWS Account that can be used for Dashboard deployment in other accounts. The resource file can be used with all other cid commands. Both accounts must have relevant Athena Views and Tables. Export from account A: ``` cid-cmd export ``` Deployment to account B: ``` cid-cmd deploy --resources ./mydashboard.yaml ``` #### See available commands and command line options ``` cid-cmd --help ``` ## Troubleshooting If you experience unexpected behaviour of the cid-cmd script please run cid-cmd in debug mode ```bash cid-cmd -vv [command] ``` This will produce a log file in the same directory that were at the tile of launch of cid-cmd. :heavy_exclamation_mark:Inspect the produced debug log for any sensitive information and anonymise it. We encourage you to open [new issue](https://github.com/aws-samples/aws-cudos-framework-deployment/issues/new) with description of the problem and attached debug log file.


نیازمندی

مقدار نام
- setuptools
>=1.26 boto3
>=8.0 Click
- deepmerge
- PyYAML
- requests
>=1.15 six
>=1.10 questionary


نحوه نصب


نصب پکیج whl cid-cmd-0.2.9:

    pip install cid-cmd-0.2.9.whl


نصب پکیج tar.gz cid-cmd-0.2.9:

    pip install cid-cmd-0.2.9.tar.gz