معرفی شرکت ها


cholespy-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A self-contained sparse Cholesky solver, compatible with CPU and GPU tensor frameworks.
ویژگی مقدار
سیستم عامل -
نام فایل cholespy-0.1.6
نام cholespy
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Baptiste Nicolet
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cholespy/
مجوز BSD
# What is this repo? This is a minimalistic, self-contained sparse Cholesky solver, supporting solving both on the CPU and on the GPU, easily integrable in your tensor pipeline. When we were working on our "Large Steps in Inverse Rendering of Geometry" paper [[1]](#references), we found it quite challenging to hook up an existing sparse linear solver to our pipeline, and we managed to do so by adding dependencies on large projects (i.e. `cusparse` and `scikit-sparse`), only to use a small part of its functionality. Therefore, we decided to implement our own library, that serves one purpose: efficiently solving sparse linear systems on the GPU or CPU, using a Cholesky factorization. Under the hood, it relies on CHOLMOD for sparse matrix factorization. For the solving phase, it uses CHOLMOD for the CPU version, and uses the result of an analysis step run *once* when building the solver for fast solving on the GPU [[2]](#references). It achieves comparable performance as other frameworks, with the dependencies nicely shipped along. <br /> <p align="center"> <a href="https://bnicolet.com/publications/Nicolet2021Large.html"> <img src="https://raw.githubusercontent.com/rgl-epfl/cholespy/main/tests/benchmark.jpg" alt="Benchmark" width="100%"> </a> <p align="center"> Benchmark run on a Linux Ryzen 3990X workstation with a TITAN RTX. </p> </p> <br /> The Python bindings are generated with [nanobind](https://github.com/wjakob/nanobind), which makes it easily interoperable with most tensor frameworks (Numpy, PyTorch, JAX...) # Installing ## With PyPI (recommended) ```bash pip install cholespy ``` ## From source ```bash git clone --recursive https://github.com/rgl-epfl/cholespy pip install ./cholespy ``` # Documentation There is only one class in the module, with two variants: `CholeskySolverF, CholeskySolverD`. The only difference is that `CholeskySolverF` solves the system in single precision while `CholeskySolverD` uses double precision. This is mostly useful for solving on the GPU, as the CPU version relies on CHOLMOD, which only supports double precision anyway. The most common tensor frameworks (PyTorch, NumPy, TensorFlow...) are supported out of the box. You can pass them directly to the module without any need for manual conversion. Since both variants have the same signature, we only detail `CholeskySolverF` below: **`cholespy.CholeskySolverF(n_rows, ii, jj, x, type)`** **Parameters:** - `n_rows` - The number of rows in the (sparse) matrix. - `ii` - The first array of indices in the sparse matrix representation. If `type` is `COO`, then this is the array of row indices. If it is `CSC` (resp. `CSR`), then it is the array of column (resp. row) indices, such that row (resp. column) indices for column (resp. row) `k` are stored in `jj[ii[k]:ii[k+1]]` and the corresponding entries are in `x[ii[k]:ii[k+1]]`. - `jj` - The second array of indices in the sparse matrix representation. If `type` is `COO`, then this is the array of column indices. If it is `CSC` (resp. `CSR`), then it is the array of row (resp. column) indices. - `x` - The array of nonzero entries. - `type` - The matrix representation type, of type `MatrixType`. Available types are `MatrixType.COO`, `MatrixType.CSC` and `MatrixType.CSR`. **`cholespy.CholeskySolverF.solve(b, x)`** **Parameters** - `b` - Right-hand side of the equation to solve. Can be a vector or a matrix. If it is a matrix, it must be of shape `(n_rows, n_rhs)`. It must be on the same device as the tensors passed to the solver constructor. If using CUDA arrays, then the maximum supported value for `n_rhs` is `128`. - `x` - Placeholder for the solution. It must be on the same device and have the same shape as `b`. `x` and `b` **must** have the same dtype as the solver used, i.e. `float32` for `CholeskySolverF` or `float64` for `CholeskySolverD`. Since `x` is modified in place, implicit type conversion is not supported. # Example usage ```python from cholespy import CholeskySolverF, MatrixType import torch # Identity matrix n_rows = 20 rows = torch.arange(n_rows, device='cuda') cols = torch.arange(n_rows, device='cuda') data = torch.ones(n_rows, device='cuda') solver = CholeskySolverF(n_rows, rows, cols, data, MatrixType.COO) b = torch.ones(n_rows, device='cuda') x = torch.zeros_like(b) solver.solve(b, x) # b = [1, ..., 1] ``` # References [1] Nicolet, B., Jacobson, A., & Jakob, W. (2021). Large steps in inverse rendering of geometry. ACM Transactions on Graphics (TOG), 40(6), 1-13. [2] Naumov, M. (2011). Parallel solution of sparse triangular linear systems in the preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA, Tech. Rep. NVR-2011, 1.


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cholespy-0.1.6:

    pip install cholespy-0.1.6.whl


نصب پکیج tar.gz cholespy-0.1.6:

    pip install cholespy-0.1.6.tar.gz