معرفی شرکت ها


choix-0.3.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Inference algorithms for models based on Luce's choice axiom.
ویژگی مقدار
سیستم عامل -
نام فایل choix-0.3.5
نام choix
نسخه کتابخانه 0.3.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lucas Maystre
ایمیل نویسنده lucas@maystre.ch
آدرس صفحه اصلی https://github.com/lucasmaystre/choix
آدرس اینترنتی https://pypi.org/project/choix/
مجوز MIT
choix ===== |build-status| |coverage| |docs| ``choix`` is a Python library that provides inference algorithms for models based on Luce's choice axiom. These probabilistic models can be used to explain and predict outcomes of comparisons between items. - **Pairwise comparisons**: when the data consists of comparisons between two items, the model variant is usually referred to as the *Bradley-Terry* model. It is closely related to the Elo rating system used to rank chess players. - **Partial rankings**: when the data consists of rankings over (a subset of) the items, the model variant is usually referred to as the *Plackett-Luce* model. - **Top-1 lists**: another variation of the model arises when the data consists of discrete choices, i.e., we observe the selection of one item out of a subset of items. - **Choices in a network**: when the data consists of counts of the number of visits to each node in a network, the model is known as the *Network Choice Model*. ``choix`` makes it easy to infer model parameters from these different types of data, using a variety of algorithms: - Luce Spectral Ranking - Minorization-Maximization - Rank Centrality - Approximate Bayesian inference with expectation propagation Getting started --------------- To install the latest release directly from PyPI, simply type:: pip install choix To get started, you might want to explore one of these notebooks: - `Introduction using pairwise-comparison data <https://github.com/lucasmaystre/choix/blob/master/notebooks/intro-pairwise.ipynb>`_ - `Case study: analyzing the GIFGIF dataset <https://github.com/lucasmaystre/choix/blob/master/notebooks/gifgif-dataset.ipynb>`_ - `Using ChoiceRank to understand traffic on a network <https://github.com/lucasmaystre/choix/blob/master/notebooks/choicerank-tutorial.ipynb>`_ - `Approximate Bayesian inference using EP <https://github.com/lucasmaystre/choix/blob/master/notebooks/ep-example.ipynb>`_ You can also find more information on the `official documentation <http://choix.lum.li/en/latest/>`_. In particular, the `API reference <http://choix.lum.li/en/latest/api.html>`_ contains a good summary of the library's features. References ---------- - Hossein Azari Soufiani, William Z. Chen, David C. Parkes, and Lirong Xia, `Generalized Method-of-Moments for Rank Aggregation`_, NIPS 2013 - François Caron and Arnaud Doucet. `Efficient Bayesian Inference for Generalized Bradley-Terry models`_. Journal of Computational and Graphical Statistics, 21(1):174-196, 2012. - Wei Chu and Zoubin Ghahramani, `Extensions of Gaussian processes for ranking\: semi-supervised and active learning`_, NIPS 2005 Workshop on Learning to Rank. - David R. Hunter. `MM algorithms for generalized Bradley-Terry models`_, The Annals of Statistics 32(1):384-406, 2004. - Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee, `Inverting a Steady-State`_, WSDM 2015. - Lucas Maystre and Matthias Grossglauser, `Fast and Accurate Inference of Plackett-Luce Models`_, NIPS, 2015. - Lucas Maystre and M. Grossglauser, `ChoiceRank\: Identifying Preferences from Node Traffic in Networks`_, ICML 2017. - Sahand Negahban, Sewoong Oh, and Devavrat Shah, `Iterative Ranking from Pair-wise Comparison`_, NIPS 2012. .. _Generalized Method-of-Moments for Rank Aggregation: https://papers.nips.cc/paper/4997-generalized-method-of-moments-for-rank-aggregation.pdf .. _Efficient Bayesian Inference for Generalized Bradley-Terry models: https://hal.inria.fr/inria-00533638/document .. _Extensions of Gaussian processes for ranking\: semi-supervised and active learning: http://www.gatsby.ucl.ac.uk/~chuwei/paper/gprl.pdf .. _MM algorithms for generalized Bradley-Terry models: http://sites.stat.psu.edu/~dhunter/papers/bt.pdf .. _Inverting a Steady-State: http://theory.stanford.edu/~sergei/papers/wsdm15-cset.pdf .. _Fast and Accurate Inference of Plackett-Luce Models: https://infoscience.epfl.ch/record/213486/files/fastinference.pdf .. _ChoiceRank\: Identifying Preferences from Node Traffic in Networks: https://infoscience.epfl.ch/record/229164/files/choicerank.pdf .. _Iterative Ranking from Pair-wise Comparison: https://papers.nips.cc/paper/4701-iterative-ranking-from-pair-wise-comparisons.pdf .. |build-status| image:: https://api.travis-ci.com/lucasmaystre/choix.svg?branch=master :alt: build status :scale: 100% :target: https://app.travis-ci.com/github/lucasmaystre/choix .. |coverage| image:: https://codecov.io/gh/lucasmaystre/choix/branch/master/graph/badge.svg :alt: code coverage :scale: 100% :target: https://codecov.io/gh/lucasmaystre/choix .. |docs| image:: https://readthedocs.org/projects/choix/badge/?version=latest :alt: documentation status :scale: 100% :target: http://choix.lum.li/en/latest/?badge=latest


نحوه نصب


نصب پکیج whl choix-0.3.5:

    pip install choix-0.3.5.whl


نصب پکیج tar.gz choix-0.3.5:

    pip install choix-0.3.5.tar.gz