معرفی شرکت ها


chemplot-1.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python library for chemical space visualization.
ویژگی مقدار
سیستم عامل -
نام فایل chemplot-1.2.1
نام chemplot
نسخه کتابخانه 1.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Murat Cihan Sorkun, Dajt Mullaj
ایمیل نویسنده mcsorkun@gmail.com, dajt.mullai@gmail.com
آدرس صفحه اصلی https://github.com/mcsorkun/ChemPlot
آدرس اینترنتی https://pypi.org/project/chemplot/
مجوز BSD
<p align="center"> <img width="600" src="https://raw.githubusercontent.com/mcsorkun/ChemPlot/main/docs/logo_chemplot.png"> </p> <br /> [![PyPI version](https://badge.fury.io/py/chemplot.svg)](https://badge.fury.io/py/chemplot) [![Downloads](https://pepy.tech/badge/chemplot/month)](https://pepy.tech/project/chemplot) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/chemplot/badges/version.svg)](https://anaconda.org/conda-forge/chemplot) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/chemplot/badges/downloads.svg)](https://anaconda.org/conda-forge/chemplot) [![PyPI - License](https://img.shields.io/pypi/l/chemplot?color=yellow)](https://github.com/mcsorkun/ChemPlot/blob/main/LICENSE) [![Documentation Status](https://readthedocs.org/projects/chemplot/badge/?version=latest)](https://chemplot.readthedocs.io/en/latest/?badge=latest) [![Tests](https://github.com/mcsorkun/ChemPlot/actions/workflows/tests.yml/badge.svg)](https://github.com/mcsorkun/ChemPlot/actions/workflows/tests.yml) [![Coverage Status](https://coveralls.io/repos/github/mcsorkun/ChemPlot/badge.svg)](https://coveralls.io/github/mcsorkun/ChemPlot) # ChemPlot Chemplot is a python library for chemical space visualization that allows users to plot the chemical space of their molecular datasets. Chemplot contains both structural and tailored similarity algorithms to plot similar molecules together based on the needs of users. Moreover, it is easy to use even for non-experts. ## Resources ### User Manual You can find the detailed features and examples in the following link: [User Manual](https://chemplot.readthedocs.io/en/latest/). ### Web Application ChemPlot is also available as a web application. You can use it at the following link: [Web Application](https://share.streamlit.io/mcsorkun/chemplot-web/main/web_app_chemplot.py). ### Paper You can find the details for the background on ChemPlot in our paper. You can download our paper at: [Paper](https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmtd.202200005). ## Installation There are two different options to install ChemPlot: ### Option 1: Use conda To install ChemPlot using conda, run the following from the command line: conda install -c conda-forge chemplot ### Option 2: Use pip ChemPlot requires RDKit, which cannot be installed using pip. The official RDKit installation documentation can be found [here](http://www.rdkit.org/docs/Install.html). After having installed RDKit, ChemPlot can be installed using pip by running: pip install chemplot ## How to use ChemPlot ChemPlot is a cheminformatics tool whose purpose is to visualize subsets of the chemical space in two dimensions. It uses the [RDKit chemistry framework](http://www.rdkit.org), the [scikit-learn](http://scikit-learn.org/stable/index.html) API and the [umap-learn](https://github.com/lmcinnes/umap) API. ### Getting started To demonstrate how to use the functions the library offers we use [BBBP](https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv) (blood-brain barrier penetration) [1] molecular dataset. BBBP is a set of molecules encoded as SMILES, which have been assigned a binary label according to their permeability properties. This dataset can be retrieved from the library as a [pandas](https://pandas.pydata.org/pandas-docs/stable/index.html) DataFrame object. ``` {.sourceCode .python3} import chemplot as cp data_BBBP = cp.load_data("BBBP") ``` To visualize the molecules in 2D according to their similarity it is first needed to construct a `Plotter` object. This is the class containing all the functions ChemPlot uses to produce the desired visualizations. A `Plotter` object can be constructed using classmethods, which differentiate between the type of input that is feed to the object. In our example we need to use the method from\_smiles. We pass three parameters: the list of SMILES from the BBBP dataset, their target values (the binary labels) and the target type (in this case “C”, which stands for “Classification”). ``` {.sourceCode .python3} plotter = cp.Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C") ``` ### Plotting the results When the `Plotter` object was constructed descriptors for each SMILES were calculated, using the library [mordred](http://mordred-descriptor.github.io/documentation/v0.1.0/introduction.html), and then selected based on the target values. We reduce the number of dimensions for each molecule from the number of descriptors selected to only 2. ChemPlot uses three different algorithms in order to achieve this. In this example we will first use t-SNE [2]. ``` {.sourceCode .python3} plotter.tsne() ``` The output will be a dataframe containg the reduced dimensions and the target values. | t-SNE-1 | t-SNE-2 | target | |------------------|------------------|------------------| | -41.056122 | 0.355575 | 1 | | -35.535915 | 21.648867 | 1 | | 23.771597 | -14.438373 | 1 | To now visualize the chemical space of the dataset we use `visualize_plot()`. ``` {.sourceCode .python3} plotter.visualize_plot() ``` ![image](https://raw.githubusercontent.com/mcsorkun/ChemPlot/main/docs/user_manual/images/gs_tsne.png) The second figure shows the results obtained by reducing the dimensions of features Principal Component Analysis (PCA) [3]. ``` {.sourceCode .python3} plotter.pca() plotter.visualize_plot() ``` ![image](https://raw.githubusercontent.com/mcsorkun/ChemPlot/main/docs/user_manual/images/gs_pca.png) The third figure shows the results obtained by reducing the dimensions of features by UMAP [4]. ``` {.sourceCode .python3} plotter.umap() plotter.visualize_plot() ``` ![image](https://raw.githubusercontent.com/mcsorkun/ChemPlot/main/docs/user_manual/images/gs_umap.png) In each figure the molecules are coloured by class value. * * * * * <h3> References: </h3> [1]: **Martins, Ines Filipa, et al.** (2012). [A Bayesian approach to in silico blood-brain barrier penetration modeling.](https://pubmed.ncbi.nlm.nih.gov/22612593/) Journal of chemical information and modeling 52.6, 1686-1697 [2]: **van der Maaten, Laurens, Hinton, Geoffrey.** (2008). [Viualizingdata using t-SNE.](https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwAR0Bgg1eA5TFmqOZeCQXsIoL6PKrVXUFaskUKtg6yBhVXAFFvZA6yQiYx-M) Journal of Machine Learning Research. 9. 2579-2605. [3]: **Wold, S., Esbensen, K., Geladi, P.** (1987). [Principal component analysis.](https://www.sciencedirect.com/science/article/abs/pii/0169743987800849) Chemometrics and intelligent laboratory systems. 2(1-3). 37-52. [4]: **McInnes, L., Healy, J., Melville, J.** (2018). [Umap: Uniform manifold approximation and projection for dimension reduction.](https://arxiv.org/abs/1802.03426) arXivpreprint arXiv:1802.03426. ### Contact For any question you can contact us through email: - [Murat Cihan Sorkun](mailto:mcsorkun@gmail.com) - [Dajt Mullaj](mailto:dajt.mullai@gmail.com)


نیازمندی

مقدار نام
>=1.1.3 pandas
>=1.19.2 numpy
==3.3.2 matplotlib
==0.11.1 seaborn
>=0.5.1 umap-learn
==0.24.2 scikit-learn
>=2.2.3 bokeh
>=1.5.2 scipy
>=1.2.0 mordred
>=2.5 networkx


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl chemplot-1.2.1:

    pip install chemplot-1.2.1.whl


نصب پکیج tar.gz chemplot-1.2.1:

    pip install chemplot-1.2.1.tar.gz