معرفی شرکت ها


chemotools-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package to integrate chemometrics in scikit-learn pipelines
ویژگی مقدار
سیستم عامل -
نام فایل chemotools-0.0.9
نام chemotools
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Pau Cabaneros Lopez
ایمیل نویسنده pau.cabaneros@gmail.com
آدرس صفحه اصلی https://github.com/paucablop/chemotools
آدرس اینترنتی https://pypi.org/project/chemotools/
مجوز -
![chemotools](assets/images/logo_5.png) [![pypi](https://img.shields.io/pypi/v/chemotools)](https://pypi.org/project/chemotools) [![pypi](https://img.shields.io/pypi/pyversions/chemotools)](https://pypi.org/project/chemotools) [![pypi](https://img.shields.io/pypi/l/chemotools)](https://github.com/paucablop/chemotools/blob/main/LICENSE) [![codecov](https://codecov.io/github/paucablop/chemotools/branch/main/graph/badge.svg?token=D7JUJM89LN)](https://codecov.io/github/paucablop/chemotools) [![Downloads](https://static.pepy.tech/badge/chemotools)](https://pepy.tech/project/chemotools) # __chemotools__ Welcome to Chemotools, a Python package that integrates chemometrics with Scikit-learn. ## Note Since I released Chemotools, I have received a fantastic response from the community. I am really happy for the interest in the project 🤗. This also means that I have received a lot of good feedback and suggestions for improvements. I have been intensively working on releasing new versions of Chemotools to address the feedback and suggestions. If you use Chemotools, __make sure you are using the latest version__ (see installation), which will be aligned with the documentation. 👉👉 Check the [latest version](https://pypi.org/project/chemotools/) and make sure you don't miss out on cool new features. 👉👉 Check the [documentation](https://paucablop.github.io/chemotools/) for a full description on how to use chemotools. ## Description Chemotools is a Python package that provides a collection of preprocessing tools and utilities for working with spectral data. It is built on top of popular scientific libraries and is designed to be highly modular, easy to use, and compatible with Scikit-learn transformers. If you are interested in learning more about chemotools, please visit the [documentation](https://paucablop.github.io/chemotools/) page. Benefits: - Provides a collection of preprocessing tools and utilities for working with spectral data - Highly modular and compatible with Scikit-learn transformers - Can perform popular preprocessing tasks such as baseline correction, smoothing, scaling, derivatization, and scattering correction - Open source and available on PyPI Applications: - Analyzing and processing spectral data in chemistry, biology, and other fields - Developing machine learning models for predicting properties or classifying samples based on spectral data - Teaching and learning about chemometrics and data preprocessing in Python ## Installation Chemotools is distributed via PyPI and can be easily installed using pip: ```bash pip install chemotools ``` Upgrading to the latest version is as simple as: ```bash pip install chemotools --upgrade ``` ## Usage Chemotools is designed to be used in conjunction with Scikit-learn. It follows the same API as other Scikit-learn transformers, so you can easily integrate it into your existing workflow. For example, you can use chemotools to build pipelines that include transformers from chemotools and Scikit-learn: ```python from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from chemotools.baseline import AirPls from chemotools.scatter import MultiplicativeScatterCorrection preprocessing = make_pipeline(AirPls(), MultiplicativeScatterCorrection(), StandardScaler(with_std=False)) spectra_transformed = preprocessing.fit_transform(spectra) ``` Check the [documentation](https://paucablop.github.io/chemotools/) for more information on how to use chemotools. ## Contributing We welcome contributions to Chemotools from anyone interested in improving the package. Whether you have ideas for new features, bug reports, or just want to help improve the code, we appreciate your contributions! You are also welcome to see the [Project Board](https://github.com/users/paucablop/projects/4) to see what we are currently working on. To contribute to Chemotools, please follow the [contributing guidelines](CONTRIBUTING.md). ## License This package is distributed under the MIT license. See the [LICENSE](LICENSE) file for more information. ## Credits AirPLS baseline correction is based on the implementation by [Zhang et al.](https://pubs.rsc.org/is/content/articlelanding/2010/an/b922045c). The current implementation is based on the Python implementation by [zmzhang](https://github.com/zmzhang/airPLS).


نیازمندی

مقدار نام
- numpy
- scipy
- scikit-learn


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl chemotools-0.0.9:

    pip install chemotools-0.0.9.whl


نصب پکیج tar.gz chemotools-0.0.9:

    pip install chemotools-0.0.9.tar.gz