معرفی شرکت ها


chatdbt-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

chatdbt is an openai-based dbt documentation robot. You can use natural language to describe your data query requirements to the robot, and chatdbt will help you select the dbt model you need, or generate sql responses based on these dbt models to meet your need
ویژگی مقدار
سیستم عامل -
نام فایل chatdbt-0.0.5
نام chatdbt
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده cadl
ایمیل نویسنده ctrlaltdeleteliu@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/chatdbt/
مجوز -
# chatdbt ## What is this? chatdbt is an openai-based [dbt](https://www.getdbt.com/) documentation robot. You can use natural language to describe your data query requirements to the robot, and chatdbt will help you select the dbt model you need, or generate sql responses based on these dbt models to meet your needs. Of course, you need to set up your [dbt documentation](https://docs.getdbt.com/reference/commands/cmd-docs) for chatdbt in advance. ## Quick Install `pip install chatdbt` package extras: - `nomic`: use nomic/atlas as vector storage backend - `pgvector`: use pgvector as vector storage backend ## Internals Chatdbt uses openai's `text-embedding-ada-002` model interface to embed your dbt documentation and save the vectors to the vector storage you provide. When you make an inquiry to chatdbt, it retrieves the [models](https://docs.getdbt.com/docs/build/models) and [metrics](https://docs.getdbt.com/docs/build/metrics) (todo😊) that are semantically similar to your question. Based on the returned content and your question, it uses openai `gpt-3.5-turbo` model to provide appropriate answers. Similar to [langchain](https://github.com/hwchase17/langchain) or [llama_index](https://github.com/jerryjliu/llama_index). **How does chatdbt integrate with my dbt doc, and where is my embedding data stored?** There are several interfaces within chatdbt: - `VectorStorage` is responsible for storing embedding vectors. Currently supporting: - `atlas` Set up your `api_key` and `project_name` to use Nomic Atlas for storing and retrieving the vector data. - `pgvector` Set up your `connect_string` and `table_name` to use pgvector for storing and retrieving the vector data. - `DBTDocResolver` is responsible for providing dbt manifest and catalog data. Currently supporting: - `localfs` Set up `manifest_json_path` and `manifest_json_path`, and chatdbt will read the dbt manifest and catalog from the local file system. - `TikTokenProvider` is responsible for estimating the number of tokens consumed by OpenAI. Currently supporting: - `tiktoken_http_server` Set up a [tiktoken-http-server](https://github.com/howdymic/tiktoken-server) `api_base`(example: `http://localhost:8080`) to use tiktoken-http-server for estimating the number of tokens consumed by OpenAI. You can also implement the above interfaces yourself and integrate them into your own system. ## Quick Start You can initialize a chatdbt instance manually: ```python your_pgvector_connect_string = "postgresql+psycopg://postgres:foobar@localhost:5432/chatdbt" your_pgvector_table_name = "chatdbt" your_manifest_json_path = "data/manifest.json" your_catalog_json_path = "data/catalog.json" your_openai_key = "sk-foobar" ``` ```python import os os.environ["OPENAI_API_KEY"] = your_openai_key from chatdbt import ChatBot from chatdbt.vector_storage.pgvector import PGVectorStorage from chatdbt.dbt_doc_resolver.localfs import LocalfsDBTDocResolver vector_storage = PGVectorStorage(connect_string=your_pgvector_connect_string, table_name=your_pgvector_table_name) dbt_doc_resolver = LocalfsDBTDocResolver(manifest_json_path=your_manifest_json_path, catalog_json_path=your_catalog_json_path) bot = ChatBot(doc_resolver=dbt_doc_resolver, vector_storage=vector_storage, tiktoken_provider=None) bot.suggest_table("query the number of users who have purchased a product") bot.suggest_sql("query the number of users who have purchased a product") ``` or initialize a chatdbt instance with environment variables: ```python import os os.environ["CHATDBT_I18N"] = "zh-cn" os.environ["CHATDBT_VECTOR_STORAGE_TYPE"] = "pgvector" os.environ[ "CHATDBT_VECTOR_STORAGE_CONFIG_CONNECT_STRING" ] = your_pgvector_connect_string os.environ["CHATDBT_VECTOR_STORAGE_CONFIG_TABLE_NAME"] = your_pgvector_table_name os.environ["CHATDBT_DBT_DOC_RESOLVER_TYPE"] = "localfs" os.environ["CHATDBT_DBT_DOC_RESOLVER_CONFIG_MANIFEST_JSON_PATH"] = your_manifest_json_path os.environ["CHATDBT_DBT_DOC_RESOLVER_CONFIG_CATALOG_JSON_PATH"] = your_catalog_json_path os.environ["OPENAI_API_KEY"] = your_openai_key import chatdbt chatdbt.suggest_table("query the number of users who have purchased a product") chatdbt.suggest_sql("query the number of users who have purchased a product") ```


نیازمندی

مقدار نام
>=1.9,<2.0 pydantic
>=0.27,<0.28 openai[datalib,embeddings]
>=8,<9 tenacity
>=2.28,<3.0 requests
>=1.0,<2.0 nomic
>=0.1,<0.2 pgvector
>=2,<3 sqlalchemy
>=3,<4 psycopg[binary]


زبان مورد نیاز

مقدار نام
>=3.7.1,<3.11 Python


نحوه نصب


نصب پکیج whl chatdbt-0.0.5:

    pip install chatdbt-0.0.5.whl


نصب پکیج tar.gz chatdbt-0.0.5:

    pip install chatdbt-0.0.5.tar.gz