معرفی شرکت ها


chat-toolkit-1.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extensible package for creating machine learning powered chatbots.
ویژگی مقدار
سیستم عامل -
نام فایل chat-toolkit-1.1.1
نام chat-toolkit
نسخه کتابخانه 1.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده danb27
ایمیل نویسنده danbianchini@outlook.com
آدرس صفحه اصلی https://github.com/danb27/chat-toolkit
آدرس اینترنتی https://pypi.org/project/chat-toolkit/
مجوز MIT
<!-- TOC --> * [Chat Toolkit](#chat-toolkit) * [Installation](#installation) * [Quick Usage](#quick-usage) * [Components](#components) * [Chatbots](#chatbots) * [Speech to Text](#speech-to-text) * [Text to Speech](#text-to-speech) * [Orchestrator](#orchestrator) * [Text to Text](#text-to-text) * [Speech to Text](#speech-to-text-1) * [Text to Speech](#text-to-speech-1) * [Speech to Speech](#speech-to-speech) <!-- TOC --> # Chat Toolkit Extensible package for creating machine learning powered chatbots. Package supports Linux and Windows. Mac is not explicitly supported, although it is possible some, or many parts of this will still work. **NOTE**: Some components require additional dependencies. See below for more information. ## Installation `pip install -U chat-toolkit` ## Quick Usage The main script has been provided for convenience. This allows you to easily start a conversation in your terminal. Usage: ``` usage: A script for quickly starting a conversation in your terminal. [-h] [--chatbot {chatgpt}] [--speech-to-text [{whisper}]] [--text-to-speech [{pyttsx3}]] options: -h, --help show this help message and exit --chatbot {chatgpt} Chatbot to use. Default: chatgpt. --speech-to-text [{whisper}] Speech to text model to use. Without additional arguments, defaults to whisper. Defaults to None when argument is not present. --text-to-speech [{pyttsx3}] Text to speech model to use. Without additional arguments, defaults to pyttsx3. Defaults to None when argument is not present. ``` To quickly start up a Text to Text conversation (default models): `python -m chat_toolkit` To quickly start up a Speech to Text conversation (default models): `python -m chat_toolkit --speech-to-text` To quickly start up a Text to Speech conversation (default models): `python -m chat_toolkit --text-to-speech` To quickly start up a Speech to Speech conversation (default models): `python -m chat_toolkit --speech-to-text --text-to-speech` ## Components Components are ML powered objects that accomplish tasks. Components should be able to estimate session costs. You can build your own components to use in isolation or as part of an orchestrator object. **NOTE**: Cost estimates are based on pricing rates provided by the user. Users should do their own due dilligence and are responsible for their own costs and estimations. > Advanced Usage: You can create your own component types by > subclassing `chat_toolkit.base.ComponentBase` ### Chatbots These components send and receive text messages. | Class | Requirements | Model | Default Cost | Reference | |---------------|----------------|-------------------------|------------------|------------------------------------------------------------------------------| | OpenAIChatBot | OPENAI_API_KEY | gpt-3.5-turbo (ChatGPT) | $0.002/1k tokens | [OpenAI](https://platform.openai.com/docs/guides/chat/chat-completions-beta) | Basic Usage: ```python from chat_toolkit import OpenAIChatBot chatbot = OpenAIChatBot() chatbot.prompt_chatbot("You are a butler named Jeeves.") chatbot_response, _ = chatbot.send_message("Hello, what is your name?") ``` > Advanced Usage: You can create your own chatbot components by > subclassing `chat_toolkit.base.ChatbotComponentBase` ### Speech to Text These components record speech and transform it into text. | Class | Requirements | Model | Default Cost | Reference | |--------------------|---------------------------------------|----------|------------------|--------------------------------------------------------------------------------------| | OpenAISpeechToText | OPENAI_API_KEY, libportaudio2 (linux) | whiper-1 | $0.006/1k tokens | [OpenAI](https://platform.openai.com/docs/guides/speech-to-text/speech-to-text-beta) | Basic Usage: ```python from chat_toolkit import OpenAISpeechToText speech_to_text = OpenAISpeechToText() text, _ = speech_to_text.transcribe_speech() ``` **NOTE**: Recording quality is very sensitive to your hardware. Things can go wrong, for example, if the input volume on your microphone is too loud. > Advanced Usage: You can create your own speech to text components by > subclassing `chat_toolkit.base.SpeechToTextComponentBase` ### Text to Speech These components say pieces of text. | ClassTextToSpeech | Requirements | Model | Default Cost | Reference | |---------------------|----------------|--------|--------------|------------------------------------------------------| | Pyttsx3TextToSpeech | espeak (linux) | n/a | Free | [Pyttsx3](https://pyttsx3.readthedocs.io/en/latest/) | **NOTE**: Pyttsx3TextToSpeech currently defaults to English, but it may be configured using `set_pyttsx3_property()` method. See pyttsx3's documentation for more information. Basic Usage: ```python from chat_toolkit import Pyttsx3TextToSpeech text_to_speech = Pyttsx3TextToSpeech() text_to_speech.say_text("hello") ``` > Advanced Usage: You can create your own text to speech components by > subclassing `chat_toolkit.base.TextToSpeechComponentBase` ## Orchestrator The Orchestrator class also allow you to chat from the terminal. The Orchestrator should work such that you can replace any component with another of the same type, or a custom-built one, and still be able to use the orchestrator. ### Text to Text Basic usage: ```python from chat_toolkit import OpenAIChatBot from chat_toolkit import Orchestrator chat = Orchestrator(OpenAIChatBot()) chat.terminal_conversation() ``` ### Speech to Text Basic usage: ```python from chat_toolkit import OpenAIChatBot, OpenAISpeechToText from chat_toolkit import Orchestrator chat = Orchestrator(OpenAIChatBot(), OpenAISpeechToText()) chat.terminal_conversation() ``` ### Text to Speech Basic usage: ```python from chat_toolkit import OpenAIChatBot, Pyttsx3TextToSpeech from chat_toolkit import Orchestrator chat = Orchestrator(OpenAIChatBot(), text_to_speech_component=Pyttsx3TextToSpeech()) chat.terminal_conversation() ``` ### Speech to Speech Basic usage: ```python from chat_toolkit import OpenAIChatBot, OpenAISpeechToText, Pyttsx3TextToSpeech from chat_toolkit import Orchestrator chat = Orchestrator(OpenAIChatBot(), OpenAISpeechToText(), Pyttsx3TextToSpeech()) chat.terminal_conversation() ```


نیازمندی

مقدار نام
>=0.27,<0.28 openai
>=0.4,<0.5 sounddevice
>=0.12,<0.13 soundfile
>=0.6.0,<0.7.0 loguru
>=1.24.2,<2.0.0 numpy
>=0.13.5,<0.14.0 keyboard
>=4.0.0,<5.0.0 pytest-cov
>=2.90,<3.0 pyttsx3
>=1.0.0,<2.0.0 pyxhook


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl chat-toolkit-1.1.1:

    pip install chat-toolkit-1.1.1.whl


نصب پکیج tar.gz chat-toolkit-1.1.1:

    pip install chat-toolkit-1.1.1.tar.gz