معرفی شرکت ها


chartify-4.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python library to make plotting simpler for data scientists
ویژگی مقدار
سیستم عامل -
نام فایل chartify-4.0.3
نام chartify
نسخه کتابخانه 4.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده chalpert@spotify.com
آدرس صفحه اصلی https://github.com/spotify/chartify
آدرس اینترنتی https://pypi.org/project/chartify/
مجوز Apache 2
Chartify ======== |status| |release| |python| |CI| .. |status| image:: https://img.shields.io/badge/Status-Beta-blue.svg .. |release| image:: https://img.shields.io/badge/Release-4.0.3-blue.svg .. |python| image:: https://img.shields.io/badge/Python-3.7-blue.svg .. |CI| image:: https://github.com/spotify/chartify/workflows/Tox/badge.svg :target: https://github.com/spotify/chartify/actions Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? ----------------- - Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format. - Smart default styles: Create pretty charts with very little customization required. - Simple API: We've attempted to make the API as intuitive and easy to learn as possible. - Flexibility: Chartify is built on top of `Bokeh <http://bokeh.pydata.org/en/latest/>`_, so if you do need more control you can always fall back on Bokeh's API. Examples -------- .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify1.png .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify2.png .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify3.png .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify4.png .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify5.png .. image:: https://raw.githubusercontent.com/spotify/chartify/master/docs/_static/chartify6.png `See this notebook for more examples! </examples/Examples.ipynb>`_. Installation ------------ 1. Chartify can be installed via pip: ``pip3 install chartify`` 2. Install chromedriver requirement (Optional. Needed for PNG output): - Install google chrome. - Download the appropriate version of chromedriver for your OS `here <https://sites.google.com/chromium.org/driver/>`_. - Copy the executable file to a directory within your PATH. - View directorys in your PATH variable: ``echo $PATH`` - Copy chromedriver to the appropriate directory, e.g.: ``cp chromedriver /usr/local/bin`` Getting started --------------- This `tutorial notebook <https://github.com/spotify/chartify/blob/master/examples/Chartify%20Tutorial.ipynb>`_ is the best place to get started with a guided tour of the core concepts of Chartify. From there, check out the `example notebook <https://github.com/spotify/chartify/blob/master/examples/Examples.ipynb>`_ for a list of all the available plots. Docs --------------- Documentation available on `chartify.readthedocs.io <https://chartify.readthedocs.io/en/latest/>`_ Getting support --------------- Join #chartify on spotify-foss.slack.com (`Get an invite <https://slackin.spotify.com/>`_) Use the `chartify tag on StackOverflow <https://stackoverflow.com/questions/tagged/chartify>`_. Resources --------------- - Data Visualization with `Chartify <https://www.section.io/engineering-education/data-viz-chartify/>`_ Code of Conduct --------------- This project adheres to the `Open Code of Conduct <https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md>`_. By participating, you are expected to honor this code. Contributing ------------ `See the contributing docs <CONTRIBUTING.rst>`_. ======= History ======= 4.0.3 (2023-04-21) ------------------ * Require jupyter_bokeh to enable html output 4.0.2 (2023-03-30) ------------------ * Fix categorical_order_by check for scatter plot * Fix categorical_order_by check for _construct_source * Refactor category sorting in _construct_source * Add tests for categorical_order_by * Fix scatter plot tests that used line plots 4.0.1 (2023-03-24) ------------------ * Updated version requirement of pillow to avoid bug 4.0.0 (2023-03-23) ------------------ * Dropped support for python 3.6 and 3.7 3.1.0 (2023-03-22) ------------------ * Added Boxplot Chart including example in examples notebook 3.0.5 (2022-12-13) ------------------ * Fixed a few errors in example and tutorial notebooks * Fixed a typo in requirements.txt 3.0.4 (2022-10-18) ------------------ * Updated package requirements * Got rid of future deprecation warnings * Bugfix related to legend for graphs with multiple groups and colors 3.0.2 (2020-10-21) ------------------ * Support pyyaml 5.2+ 3.0.1 (2020-06-02) ------------------ * Reduce dependencies by switching from Jupyter to IPython. 3.0.0 (2020-05-29) ------------------ * Updated Python to 3.6+ and Pandas to 1.0+ (Thanks @tomasaschan!) * Updated Bokeh to 2.0+ * Removed colour dependency to fix setup errors. 2.7.0 (2019-11-27) ------------------ Bugfixes: * Updated default yaml loader to move off of deprecated method (Thanks @vh920!) * Updated legend handling to adjust for deprecated methods in recent versions of Bokeh (Thanks for reporting @jpkoc) * Updated license in setup.py (Thanks for reporting @jsignell) * Bump base Pillow dependency to avoid insecure version. * Update MANIFEST to include missing files (Thanks @toddrme2178!) 2.6.1 (2019-08-15) ------------------ Bugfixes: * Moved package requirements and fixed bug that occured with latest version of Bokeh (Thanks @emschuch & @mollymzhu!) * Fixed bug in README while generating docs (Thanks @Bharat123rox!) 2.6.0 (2019-03-08) ------------------ Improvements: * Allows users to plot colors on bar charts that aren't contained in the categorical axis. Bugfixes: * Fixed bug that caused float types to break when plotted with categorical text plots (Thanks for finding @danela!) * Fixed broken readme links. 2.5.0 (2019-02-17) ------------------ Improvements: * Added Radar Chart 2.4.0 (2019-02-16) ------------------ Improvements: * Added second Y axis plotting. * Removed Bokeh loading notification on import (Thanks @canavandl!) * Added support for custom Bokeh resource loading (Thanks @canavandl!) * Added example for Chart.save() method (Thanks @david30907d!) Bugfixes: * Updated documentation for saving and showing svgs. * Fixed bug that broke plots with no difference between min and max points. (Thanks for finding @fabioconcina!) 2.3.5 (2018-11-21) ------------------ Improvements: * Updated docstrings (Thanks @gregorybchris @ItsPugle!) * Added SVG output options to Chart.show() and Chart.save() (Thanks for the suggestion @jdmendoza!) Bugfixes: * Fixed bug that caused source label to overlap with xaxis labels. * Fixed bug that prevented x axis orientation changes with datetime axes (Thanks for finding @simonwongwong!) * Fixed bug that caused subtitle to disappear with `outside_top` legend location (Thanks for finding @simonwongwong!) * Line segment callout properties will work correctly. (Thanks @gregorybchris!) 2.3.4 (2018-11-13) ------------------ * Updated Bokeh version requirements to support 1.0 2.3.3 (2018-10-24) ------------------ * Removed upper bound of Pillow dependency. 2.3.2 (2018-10-18) ------------------ * Stacked bar and area order now matches default vertical legend order. * Added method for shifting color palettes. * Added scatter plots with a single categorical axis. * Fixed bug with text_stacked that occurred with multiple categorical levels. 2.3.1 (2018-09-27) ------------------ * Fix scatter plot bug that can occur due to nested data types. 2.3.0 (2018-09-26) ------------------ * Added hexbin plot type. * More control over grouped axis label orientation. * Added alpha control to scatter, line, and parallel plots. * Added control over marker style to scatter plot. * Added ability to create custom color palettes. * Changed default accent color. * Visual tweaks to lollipop plot. * Bar plots with a few number of series will have better widths. 2.2.0 (2018-09-17) ------------------ * First release on PyPI.


نیازمندی

مقدار نام
<2.0.0,>=1.2.0 pandas
>=9.1.0 Pillow
>=4.0.0 selenium
>=3.0.0 bokeh
<2.0.0,>=1.6.0 scipy
>=6.0 ipykernel
>=7.17.0 ipython
>=6.0.0 pyyaml
>=3.1.0 Jinja2
>=3.0.7 jupyter-bokeh


زبان مورد نیاز

مقدار نام
>=3.8,<4 Python


نحوه نصب


نصب پکیج whl chartify-4.0.3:

    pip install chartify-4.0.3.whl


نصب پکیج tar.gz chartify-4.0.3:

    pip install chartify-4.0.3.tar.gz