معرفی شرکت ها


cft-analysis-1.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package for the analysis of Cold Face Test Data.
ویژگی مقدار
سیستم عامل -
نام فایل cft-analysis-1.2.0
نام cft-analysis
نسخه کتابخانه 1.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Robert Richer
ایمیل نویسنده robert.richer@fau.de
آدرس صفحه اصلی https://github.com/mad-lab-fau/cft-analysis
آدرس اینترنتی https://pypi.org/project/cft-analysis/
مجوز MIT
# cft-analysis [![PyPI](https://img.shields.io/pypi/v/cft-analysis)](https://pypi.org/project/cft-analysis/) ![GitHub](https://img.shields.io/github/license/mad-lab-fau/cft-analysis) [![Lint](https://github.com/mad-lab-fau/cft-analysis/actions/workflows/lint.yml/badge.svg)](https://github.com/mad-lab-fau/cft-analysis/actions/workflows/lint.yml) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/mad-lab-fau/cft-analysis) Python package for the analysis of data collected during the Cold Face Test (CFT) study. ## Description This package contains various helper functions to work with the dataset (including [`tpcp`](https://github.com/mad-lab-fau/tpcp) `Dataset` representations) and to process data. Additionally, it contains different analysis experiments performed with the dataset. ## Repository Structure The repository is structured as follows: ```bash ├── cft_analysis/ # cft-analysis Python package └── experiments/ # Folder with conducted analysis experiments; each experiment has its own subfolder └── 2022_scientific_reports/ # Analysis for the 2022 Scientific Reports Paper (see below) ├── data/ # Processed data and extracted parameters ├── notebooks/ # Notebooks for data processing, analysis and plotting │ ├── data_processing/ │ │ ├── ECG_Processing_Feature_Computation.ipynb # Processing and feature extraction from ECG data │ │ ├── Questionnaire_Processing.ipynb # Processing of questionnaire data │ │ └── Saliva_Processing.ipynb # Processing of saliva data │ ├── analysis/ │ │ ├── Subject_Exclusion.ipynb # Checks whether (and which) subjects need to be excluded from further analysis │ │ ├── Demographics.ipynb # Analysis of general information of study population: Age, Gender, BMI, ... │ │ ├── ECG_Analysis.ipynb # Descriptive and statistical analysis of ECG data │ │ ├── Questionnaire_Analysis.ipynb # Descriptive and statistical analysis of questionnaire data │ │ └── Saliva_Analysis.ipynb # Descriptive and statistical analysis of saliva data │ └── plotting/ ├── results/ # Plots and statistical results exported by the notebooks in the "analysis" and "plotting" folders └── config.json # ``` ## Installation If you want to use this package to reproduce the analysis results then clone the repository and install the package via [poetry](https://python-poetry.org): ```bash git clone git@github.com:mad-lab-fau/cft-analysis.git cd cft-analysis poetry install # alternative: pip install . ``` This creates a new python venv in the `cft-analysis/.venv` folder. Next, register a new IPython kernel for the venv: ```bash cd cft-analysis poetry run poe register_ipykernel ``` Finally, go to the `experiments` folder and run the Jupyter Notebooks. ## Experiments Currently, this repository contains the following experiments: ### 2022 – Scientific Reports Analysis of the [CFT Dataset](https://osf.io/8fb6n/) for the paper [Vagus Activation by Cold Face Test Reduces Acute Psychosocial Stress Responses](https://www.nature.com/articles/s41598-022-23222-9), published in *Scientific Reports*. #### Usage In order to run the code, first download the CFT Dataset, e.g. from [OSF](https://osf.io/8fb6n/). Then, create a file named `config.json` in the folder `/experiments/2022_scientific_reports` with the following content: ```json { "base_path": "<path-to-dataset>" } ``` This config file is parsed by all notebooks to extract the path to the dataset. **NOTE**: This file is ignored by git because the path to the dataset depends on the local configuration! The files in the `data` folder are created by running the notebooks in the `data_processing` folder. The files in the `result` folder are created by running the notebooks in the `analysis` and the `plotting` folders.


نیازمندی

مقدار نام
>=0.6,<0.7 biopsykit[jupyter]
>=0.9.0,<0.10.0 tpcp


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl cft-analysis-1.2.0:

    pip install cft-analysis-1.2.0.whl


نصب پکیج tar.gz cft-analysis-1.2.0:

    pip install cft-analysis-1.2.0.tar.gz