معرفی شرکت ها


ceviche-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ceviche
ویژگی مقدار
سیستم عامل OS Independent
نام فایل ceviche-0.1.2
نام ceviche
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tyler Hughes
ایمیل نویسنده tylerwhughes91@gmail.com
آدرس صفحه اصلی https://github.com/twhughes/ceviche
آدرس اینترنتی https://pypi.org/project/ceviche/
مجوز -
# ceviche [![Build Status](https://travis-ci.com/fancompute/ceviche.svg?token=ZCPktA3Ki2eYVXYnfbrz&branch=master)](https://travis-ci.com/twhughes/ceviche) Electromagnetic Simulation Tools + Automatic Differentiation. Code for paper [Forward-Mode Differentiation of Maxwell's Equations](https://arxiv.org/abs/1908.10507). <img src="/img/horizontal-color.png" title="ceviche" alt="ceviche"> ## What is ceviche? `ceviche` provides two core electromagnetic simulation tools for solving Maxwell's equations: - finite-difference frequency-domain (FDFD) - finite-difference time-domain (FDTD) Both are written in `numpy` / `scipy` and are compatible with the [HIPS autograd package](https://github.com/HIPS/autograd), supporting forward-mode and reverse-mode automatic differentiation. This allows you to write code to solve your E&M problem, and then use automatic differentiation on your results. As a result, you can do gradient-based optimization, sensitivity analysis, or plug your E&M solver into a machine learning model without having to go through the tedious process of deriving your derivatives by hand. ## Examples There is a comprehensive ceviche tutorial available at [this link](https://github.com/fancompute/workshop-invdesign) with several ipython notebook examples: 1. [Running FDFD simulations in ceviche.](https://nbviewer.jupyter.org/github/fancompute/workshop-invdesign/blob/master/01_First_simulation.ipynb) 2. [Performing inverse design of a mode converter.](https://nbviewer.jupyter.org/github/fancompute/workshop-invdesign/blob/master/02_Invdes_intro.ipynb) 3. [Adding fabrication constraints and device parameterizations.](https://nbviewer.jupyter.org/github/fancompute/workshop-invdesign/blob/master/03_Invdes_parameterization.ipynb) 4. [Inverse design of a wavelength-division multiplexer and advanced topics.](https://nbviewer.jupyter.org/github/fancompute/workshop-invdesign/blob/master/04_Invdes_wdm_scheduling.ipynb) There are also a few examples in the `examples/*` directory. ## Installation There are many ways to install `ceviche`. The easiest is by pip install ceviche But to install from a local copy, one can instead do git clone https://github.com/twhughes/ceviche.git pip install -e ceviche pip install -r ceviche/requirements.txt from the main directory. Alternatively, just download it: git clone https://github.com/twhughes/ceviche.git and then import the package from within your python script ```python import sys sys.path.append('path/to/ceviche') ``` ## Package Structure ### Ceviche The `ceviche` directory contains everything needed. To get the FDFD and FDTD simulators, import directly `from ceviche import fdtd, fdfd_ez, fdfd_hz` To get the differentiation, import `from ceviche import jacobian`. `constants.py` contains some constants `EPSILON_0`, `C_0`, `ETA_0`, `Q_E`, which are needed throughout the package `utils.py` contains a few useful functions for plotting, autogradding, and various other things. `optimizers.py` contains optimizer functions for doing inverse design. `viz.py` are functions that help with plotting fields and sructures. `modes.py` contains a mode sorter (WIP) that can be used to create waveguide mode profiles for the simulation, for example. ### Examples There are many demos in the `examples` directory, which will give you a good sense of how to use the package. ### Tests Tests are located in `tests`. To run, `cd` into `tests` and python -m unittest to run all or python specific_test.py to run a specific one. Some of these tests involve visual inspection of the field plots rather than error checking on values. To run all of the gradient checking functions, run chmod +x test/test_all_gradients.sh tests/test_all_gradients.sh ## Credits If you use this for your research or work, please cite @article{hughes2019forward, title={Forward-Mode Differentiation of Maxwell’s Equations}, author={Hughes, Tyler W and Williamson, Ian AD and Minkov, Momchil and Fan, Shanhui}, journal={ACS Photonics}, volume={6}, number={11}, pages={3010--3016}, year={2019}, publisher={ACS Publications} } Our logo was created by [@nagilmer](http://nadinegilmer.com/)


نیازمندی

مقدار نام
>=1.16.2 numpy
>=1.2.1 scipy
>=3.0.3 matplotlib
>=1.3 autograd
>=0.0.3 pyMKL


نحوه نصب


نصب پکیج whl ceviche-0.1.2:

    pip install ceviche-0.1.2.whl


نصب پکیج tar.gz ceviche-0.1.2:

    pip install ceviche-0.1.2.tar.gz