معرفی شرکت ها


cereja-1.8.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cereja is a bundle of useful functions that I don't want to rewrite.
ویژگی مقدار
سیستم عامل -
نام فایل cereja-1.8.4
نام cereja
نسخه کتابخانه 1.8.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Joab Leite <leitejoab@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cereja/
مجوز Copyright (c) 2019 The Cereja Project Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Cereja 🍒 ![Python package](https://github.com/jlsneto/cereja/workflows/Python%20package/badge.svg) [![PyPI version](https://badge.fury.io/py/cereja.svg)](https://badge.fury.io/py/cereja) [![Downloads](https://pepy.tech/badge/cereja)](https://pepy.tech/project/cereja) [![MIT LICENSE](https://img.shields.io/pypi/l/pyzipcode-cli.svg)](LICENSE) [![Issues](https://camo.githubusercontent.com/926d8ca67df15de5bd1abac234c0603d94f66c00/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f636f6e747269627574696f6e732d77656c636f6d652d627269676874677265656e2e7376673f7374796c653d666c6174)](https://github.com/jlsneto/cereja/issues/new/choose) [![Get start on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jlsneto/cereja/blob/master/docs/cereja_example.ipynb) <div align="center"> <img src="https://i.ibb.co/Fw8SSfd/cereja-logo.png" height="300" width="300" alt="CEREJA"> </div> *Cereja was written only with the Standard Python Library, and it was a great way to improve knowledge in the Language also to avoid the rewriting of code.* ## Getting Started DEV Don't be shy \0/ ... Clone the repository and submit a function or module you made or use some function you liked. See [CONTRIBUTING](CONTRIBUTING.md) 💻 ## Setup * [Python 3.6+](https://www.python.org/downloads/ "Download python") * [Pip3](https://pip.pypa.io "Download Pip") ## Install ``` pip install --user cereja ``` or for all users ``` pip install cereja ``` ## Cereja Example usage See some of the Cereja tools To access the *Cereja's* tools you need to import it `import cereja as cj`. ### 📝 [FileIO](docs/file.md) #### Create new files ```python import cereja as cj file_json = cj.FileIO.create('./json_new_file.json', data={'k': 'v', 'k2': 'v2'}) file_txt = cj.FileIO.create('./txt_new_file.txt', ['line1', 'line2', 'line3']) file_json.save() file_txt.save() print(file_json.exists) # True print(file_txt.exists) # True # see what you can do .txt file print(cj.can_do(file_txt)) # see what you can do .json file print(cj.can_do(file_json)) ``` #### Load and edit files ```python import cereja as cj file_json = cj.FileIO.load('./json_new_file.json') print(file_json.data) # {'k': 'v', 'k2': 'v2'} file_json.add(key='new_key', value='value') print(file_json.data) # {'k': 'v', 'k2': 'v2', 'new_key': 'value'} file_txt = cj.FileIO.load('./txt_new_file.txt') print(file_txt.data) # ['line1', 'line2', 'line3'] file_txt.add('line4') print(file_txt.data) # ['line1', 'line2', 'line3', 'line4'] file_txt.save(exist_ok=True) # Override file_json.save(exist_ok=True) # Override ``` ### 📍 Path ```python import cereja as cj file_path = cj.Path('/my/path/file.ext') print(cj.can_do(file_path)) # ['change_current_dir', 'cp', 'created_at', 'exists', 'get_current_dir', 'is_dir', 'is_file', 'is_hidden', 'is_link', 'join', 'last_access', 'list_dir', 'list_files', 'mv', 'name', 'parent', 'parent_name', 'parts', 'path', 'rm', 'root', 'rsplit', 'sep', 'split', 'stem', 'suffix', 'updated_at', 'uri'] ``` ### 🆗 HTTP Requests ```python import cereja as cj # Change url, headers and data values. url = 'localhost:8000/example' headers = {'Authorization': 'TOKEN'} # optional data = {'q': 'test'} # optional response = cj.request.post(url, data=data, headers=headers) if response.code == 200: data = response.data # have a fun! ``` ### ⏳ [Progress](docs/display.md) ```python import cereja as cj import time my_iterable = ['Cereja', 'is', 'very', 'easy'] for i in cj.Progress.prog(my_iterable): print(f"current: {i}") time.sleep(2) # Output on terminal ... # 🍒 Sys[out] » current: Cereja # 🍒 Sys[out] » current: is # 🍒 Cereja Progress » [▰▰▰▰▰▰▰▰▰▰▰▰▰▰▰▱▱▱▱▱▱▱▱▱▱▱▱▱▱] - 50.00% - 🕢 00:00:02 estimated ``` ### 🧠 [Data Preparation](docs/ml.md) 📊 **Freq** ```python import cereja as cj freq = cj.Freq([1, 2, 3, 3, 10, 10, 4, 4, 4, 4]) # Output -> Freq({1: 1, 2: 1, 3: 2, 10: 2, 4: 4}) freq.most_common(2) # Output -> {4: 4, 3: 2} freq.least_freq(2) # Output -> {2: 1, 1: 1} freq.probability # Output -> OrderedDict([(4, 0.4), (3, 0.2), (10, 0.2), (1, 0.1), (2, 0.1)]) freq.sample(min_freq=1, max_freq=2) # Output -> {3: 2, 10: 2, 1: 1, 2: 1} # Save json file. freq.to_json('./freq.json') ``` 🧹 **Text Preprocess** ```python import cereja as cj text = "Oi tudo bem?? meu nome é joab!" text = cj.preprocess.remove_extra_chars(text) print(text) # Output -> 'Oi tudo bem? meu nome é joab!' text = cj.preprocess.separate(text, sep=['?', '!']) # Output -> 'Oi tudo bem ? meu nome é joab !' text = cj.preprocess.accent_remove(text) # Output -> 'Oi tudo bem ? meu nome e joab !' # and more .. # You can use class Preprocessor ... preprocessor = cj.Preprocessor(stop_words=(), punctuation='!?,.', to_lower=True, is_remove_punctuation=False, is_remove_stop_words=False, is_remove_accent=True) print(preprocessor.preprocess(text)) # Output -> 'oi tudo bem ? meu nome e joab !' print(preprocessor.preprocess(text, is_destructive=True)) # Output -> 'oi tudo bem meu nome e joab' ``` 🔣 **Tokenizer** ```python import cereja as cj text = ['oi tudo bem meu nome é joab'] tokenizer = cj.Tokenizer(text, use_unk=True) # tokens 0 to 9 is UNK # hash_ used to replace UNK token_sequence, hash_ = tokenizer.encode('meu nome é Neymar Júnior') # Output -> [([10, 12, 11, 0, 1], 'eeb755960ce70c')] decoded_sequence = tokenizer.decode(token_sequence, hash_=hash_) # Output -> 'meu nome é Neymar Júnior' ``` ⏸ **Corpus** Great training and test separator. ```python import cereja as cj X = ['how are you?', 'my name is Joab', 'I like coffee', 'how are you joab?', 'how', 'we are the world'] Y = ['como você está?', 'meu nome é Joab', 'Eu gosto de café', 'Como você está joab?', 'como', 'Nós somos o mundo'] corpus = cj.Corpus(source_data=X, target_data=Y, source_name='en', target_name='pt') print(corpus) # Corpus(examples: 6 - source_vocab_size: 13 - target_vocab_size:15) print(corpus.source) # LanguageData(examples: 6 - vocab_size: 13) print(corpus.target) # LanguageData(examples: 6 - vocab_size: 15) corpus.source.phrases_freq # Counter({'how are you': 1, 'my name is joab': 1, 'i like coffee': 1, 'how are you joab': 1, 'how': 1, 'we are the world': 1}) corpus.source.word_freq # Counter({'how': 3, 'are': 3, 'you': 2, 'joab': 2, 'my': 1, 'name': 1, 'is': 1, 'i': 1, 'like': 1, 'coffee': 1, 'we': 1, 'the': 1, 'world': 1}) corpus.target.phrases_freq # Counter({'como você está': 1, 'meu nome é joab': 1, 'eu gosto de café': 1, 'como você está joab': 1, 'como': 1, 'nós somos o mundo': 1}) corpus.target.words_freq # Counter({'como': 3, 'você': 2, 'está': 2, 'joab': 2, 'meu': 1, 'nome': 1, 'é': 1, 'eu': 1, 'gosto': 1, 'de': 1, 'café': 1, 'nós': 1, 'somos': 1, 'o': 1, 'mundo': 1}) # split_data function guarantees test data without data identical to training # and only with vocabulary that exists in training train, test = corpus.split_data() # default percent of training is 80% ``` ### 🔢 Array ```python import cereja as cj cj.array.is_empty(data) # False cj.array.get_shape(data) # (2, 3) data = cj.array.flatten(data) # [1, 2, 3, 3, 3, 3] cj.array.prod(data) # 162 cj.array.sub(data) # -13 cj.array.div(data) # 0.006172839506172839 cj.array.rand_n(0.0, 2.0, n=3) # [0.3001196087729699, 0.639679494102923, 1.060200897124107] cj.array.rand_n(1, 10) # 5.086403830031244 cj.array.array_randn((3, 3, 3)) # [[[0.015077210355770374, 0.014298110484612511, 0.030410666810216064], [0.029319083335697604, 0.0072365209507707666, 0.010677361074992], [0.010576754075922935, 0.04146379877648334, 0.02188348813336284]], [[0.0451851551098092, 0.037074906805326824, 0.0032484586475421007], [0.025633380630695347, 0.010312669541918484, 0.0373624007621097], [0.047923908102496145, 0.0027939333359724224, 0.05976224377251878]], [[0.046869510719106486, 0.008325638358172866, 0.0038702998343255893], [0.06475268683502387, 0.0035638592537234623, 0.06551037943638163], [0.043317416824708604, 0.06579372884523939, 0.2477564291871006]]] cj.array.group_items_in_batches(items=[1, 2, 3, 4], items_per_batch=3, fill=0) # [[1, 2, 3], [4, 0, 0]] cj.array.remove_duplicate_items(['hi', 'hi', 'ih']) # ['hi', 'ih'] cj.array.get_cols([['line1_col1', 'line1_col2'], ['line2_col1', 'line2_col2']]) # [['line1_col1', 'line2_col1'], ['line1_col2', 'line2_col2']] cj.array.dotproduct([1, 2], [1, 2]) # 5 a = cj.array.array_gen((3, 3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]] b = cj.array.array_gen((3, 3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]] cj.array.dot(a, b) # [[3, 3, 3], [3, 3, 3], [3, 3, 3]] cj.mathtools.theta_angle((2, 2), (0, -2)) # 135.0 ``` ### 🧰 Utils ```python import cereja as cj data = {"key1": 'value1', "key2": 'value2', "key3": 'value3', "key4": 'value4'} cj.utils.chunk(list(range(10)), batch_size=3) # [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] cj.utils.chunk(list(range(10)), batch_size=3, fill_with=0, is_random=True) # [[9, 7, 8], [0, 3, 2], [4, 1, 5], [6, 0, 0]] # Invert Dict cj.utils.invert_dict(data) # Output -> {'value1': 'key1', 'value2': 'key2', 'value3': 'key3', 'value4': 'key4'} # Get sample of large data cj.utils.sample(data, k=2, is_random=True) # Output -> {'key1': 'value1', 'key4': 'value4'} cj.utils.fill([1, 2, 3, 4], max_size=20, with_=0) # Output -> [1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] cj.utils.rescale_values([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], granularity=4) # Output -> [1, 3, 5, 7] cj.utils.import_string('cereja.file._io.FileIO') # Output -> <class 'cereja.file._io.FileIO'> cj.utils.list_methods(cj.Path) # Output -> ['change_current_dir', 'cp', 'get_current_dir', 'join', 'list_dir', 'list_files', 'mv', 'rm', 'rsplit', 'split'] cj.utils.string_to_literal('[1,2,3,4]') # Output -> [1, 2, 3, 4] cj.utils.time_format(3600) # Output -> '01:00:00' cj.utils.truncate("Cereja is fun.", k=3) # Output -> 'Cer...' data = [[1, 2, 3], [3, 3, 3]] cj.utils.is_iterable(data) # True cj.utils.is_sequence(data) # True cj.utils.is_numeric_sequence(data) # True ``` [See Usage - Jupyter Notebook](./docs/cereja_example.ipynb) ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cereja-1.8.4:

    pip install cereja-1.8.4.whl


نصب پکیج tar.gz cereja-1.8.4:

    pip install cereja-1.8.4.tar.gz