معرفی شرکت ها


cerebral-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tool for creating multi-output deep ensemble neural-networks
ویژگی مقدار
سیستم عامل -
نام فایل cerebral-0.0.8
نام cerebral
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Robert Forrest
ایمیل نویسنده robertforrest@live.com
آدرس صفحه اصلی https://github.com/Robert-Forrest/cerebral
آدرس اینترنتی https://pypi.org/project/cerebral/
مجوز BSD 3-Clause License
# cerebral ![Tests](https://github.com/Robert-Forrest/cerebral/actions/workflows/tests.yml/badge.svg) Tool for creating multi-output deep ensemble neural-networks for alloy property modelling. See our paper [Machine-learning improves understanding of glass formation in metallic systems](https://pubs.rsc.org/en/content/articlelanding/2022/dd/d2dd00026a) for discussion of the model, it's architecture, and performance. ## Installation The cerebral package can be installed from [pypi](https://pypi.org/project/cerebral/) using pip: ``pip install cerebral`` Cerebral makes heavy use of the [metallurgy](https://github.com/Robert-Forrest/metallurgy) package to manipulate and approximate properties of alloys. Cerebral can be used with the [evomatic](https://github.com/Robert-Forrest/evomatic) package to perform alloy searching. ## Usage Cerebral can be used to create multi-input mult-output deep neural networks for the modelling of arbitrary alloy properties. The following example shows configuration of cerebral to predict the "price" property of an alloy, based on atomic percentages alone. Cerebral is configured to load data for this problem from the tests directory - this data is for demonstration and testing only, it is synthetically created by the [metallurgy](https://github.com/Robert-Forrest/metallurgy) package for the Cu-Zr binary alloy system. ```python import cerebral as cb cb.setup( { "targets": [{"name": "price"}], "input_features": [ "percentages" ], "data": {"files": ["tests/CuZr_prices.csv"]}, } ) data = cb.features.load_data() ``` ``` >>> data composition price Cu_percentage Zr_percentage 0 Cu100 6.000000 1.000 0.000 1 Cu99.9Zr0.1 6.044626 0.999 0.001 2 Cu99.7Zr0.3 6.133763 0.997 0.003 3 Cu99.6Zr0.4 6.178273 0.996 0.004 4 Cu99.4Zr0.6 6.267177 0.994 0.006 .. ... ... ... ... 662 Zr99.4Cu0.6 36.969779 0.006 0.994 663 Zr99.5Cu0.5 36.991515 0.005 0.995 664 Zr99.7Cu0.3 37.034949 0.003 0.997 665 Zr99.8Cu0.2 37.056646 0.002 0.998 666 Zr100 37.100000 0.000 1.000 ``` Once a DataFrame of alloy compositions, input features, and prediction targets is available, it can be used to train a model. The following example takes the DataFrame created above, and trains a neural network to reproduce the target features (for a maximum of 200 training epochs). The neural network model produced is a standard Keras / TensorFlow model. ```python model, history, train_data, test_data = cb.models.train_model( data, max_epochs=200 ) >>> model <keras.engine.functional.Functional object at 0x7f1810feac80> >>> history.history["loss"] [22.522766767894105, 21.966949822959215, ...] ``` Once a model has been created, cerebral provides automation for evaluating its performance by comparison against the training and test datasets. Since the pricing data is based on a very simple linear mixture, the model is able to learn quite well the relationship between percentages of Cu and Zr and the price. ```python ( train_predictions, train_errors, test_predictions, test_errors, metrics, ) = cb.models.evaluate_model( model, train_data["dataset"], train_data["labels"], test_ds=test_data["dataset"], test_labels=test_data["labels"], train_compositions=train_data["compositions"], test_compositions=test_data["compositions"], ) >>> metrics { 'price': { 'train': { 'R_sq': 0.9994298579318788, 'RMSE': 0.21407108083268242, 'MAE': 0.16591635524599488 }, 'test': { 'R_sq': 0.9994089218056131, 'RMSE': 0.21349478924250365, 'MAE': 0.1721696906690461 } } } ``` Futher, the model can be used to generate predictions for arbitrary alloys, as long as the required input features are supplied. Here, we see that the simple example model predicts price value for pure copper which is in the vicinity of the value originally calculated by linear mixture: ```python >>> cb.models.predict(model, "Cu100")["price"] {'price': array([6.60157898])} >>> mg.calculate("Cu100", "price") 6.0 ``` ## Documentation Documentation is available [here.](https://cerebral.readthedocs.io/en/latest/api.html)


نیازمندی

مقدار نام
- click
- adjustText
- elementy
- kt-legacy
- matplotlib
>=0.0.13 metallurgy
- numpy
- omegaconf
- pandas
>=1.1.3 scikit-learn
- scipy
- seaborn
- setuptools
- tensorflow
- pydot
- keras-tuner
- pre-commit
- black
==3.24.3 tox
==6.2.5 pytest
==2.12.1 pytest-cov


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cerebral-0.0.8:

    pip install cerebral-0.0.8.whl


نصب پکیج tar.gz cerebral-0.0.8:

    pip install cerebral-0.0.8.tar.gz