معرفی شرکت ها


cem-0.1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Python implmentation of Coarsened Exact Matching for causal inference
ویژگی مقدار
سیستم عامل -
نام فایل cem-0.1.5
نام cem
نسخه کتابخانه 0.1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lewis Bails
ایمیل نویسنده lewis.bails@gmail.com
آدرس صفحه اصلی https://github.com/lewisbails/cem
آدرس اینترنتی https://pypi.org/project/cem/
مجوز MIT license
================================================== cem: Coarsened Exact Matching for Causal Inference ================================================== .. image:: https://img.shields.io/pypi/v/cem.svg :target: https://pypi.org/project/cem/ :alt: pypi .. image:: https://travis-ci.com/lewisbails/cem.svg?branch=master :target: https://travis-ci.com/lewisbails/cem :alt: travisci .. image:: https://readthedocs.org/projects/cem-coarsened-exact-matching-for-causal-inference/badge/?version=latest :target: https://cem-coarsened-exact-matching-for-causal-inference.readthedocs.io/en/latest/?badge=latest :alt: docs cem is a lightweight library for Coarsened Exact Matching (CEM) and is essentially a poor man's version of the original R-package [1]. CEM is a matching technique used to reduce covariate imbalance which would otherwise lead to treatment effect estimates that are sensitive to model specification. By removing and/or reweighting certain observations via CEM, one can arrive at treatment effect estimates that are more stable than those found using other matching techniques like propensity score matching. The L1 and L2 multivariate imbalance measures are implemented as described in [2]. I make no claim to originality and thank the authors for their research. Get the `code <http://github.com/lewisbails/cem>`_, read the `docs <https://cem-coarsened-exact-matching-for-causal-inference.readthedocs.io/>`_, or `contribute <https://cem-coarsened-exact-matching-for-causal-inference.readthedocs.io/en/latest/contributing.html>`_! Usage ----- .. code-block:: python from cem import CEM boston = load_boston() ... df +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ | | CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | B | LSTAT | MEDV | +====+=========+======+=========+========+=======+=======+=======+========+=======+=======+===========+========+=========+========+ | 0 | 0.00632 | 18 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.09 | 1 | 296 | 15.3 | 396.9 | 4.98 | 24 | +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ | 1 | 0.02731 | 0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242 | 17.8 | 396.9 | 9.14 | 21.6 | +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ | 2 | 0.02729 | 0 | 7.07 | 0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2 | 242 | 17.8 | 392.83 | 4.03 | 34.7 | +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ | 3 | 0.03237 | 0 | 2.18 | 0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3 | 222 | 18.7 | 394.63 | 2.94 | 33.4 | +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ | 4 | 0.06905 | 0 | 2.18 | 0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3 | 222 | 18.7 | 396.9 | 5.33 | 36.2 | +----+---------+------+---------+--------+-------+-------+-------+--------+-------+-------+-----------+--------+---------+--------+ c = CEM(df, "CHAS", "MEDV") # schema are dicts where keys are column names and values are tuples of (panda cut function name, function kwargs) schema = { 'CRIM': ('cut', {'bins': 4}), 'ZN': ('cut', {'bins': 4}), 'INDUS': ('cut', {'bins': 4}), 'NOX': ('cut', {'bins': 5}), 'RM': ('cut', {'bins': 5}), 'AGE': ('cut', {'bins': 5}), 'DIS': ('cut', {'bins': 5}), 'RAD': ('cut', {'bins': 6}), 'TAX': ('cut', {'bins': 5}), 'PTRATIO': ('cut', {'bins': 6}), 'B': ('cut', {'bins': 5}), 'LSTAT': ('cut', {'bins': 5}) } # Check the multidimensional (L1) imbalance before and after matching c.imbalance() # 0.96 c.imbalance(schema) # 0.60 # Get the weights for each example after matching using the coarsening schema weights = c.match(schema) weights[weights > 0] +-----+-----------+ | | weights | +=====+===========+ | 1 | 1.25 | +-----+-----------+ | 2 | 2.5 | +-----+-----------+ | 96 | 1.25 | +-----+-----------+ | 142 | 1 | +-----+-----------+ | 143 | 0.625 | +-----+-----------+ | 144 | 0.625 | +-----+-----------+ | 147 | 0.625 | +-----+-----------+ | 148 | 0.625 | +-----+-----------+ | 150 | 2.5 | +-----+-----------+ | 151 | 2.5 | +-----+-----------+ ... # ..perform weighted regression or weighted difference of means to find your treatment effect References ---------- [1] Porro, Giuseppe & King, Gary & Iacus, Stefano. (2009). CEM: Software for Coarsened Exact Matching. Journal of Statistical Software. 30. 10.18637/jss.v030.i09. [2] Iacus, S. M., King, G., and Porro, G. Multivariate matching methods that are monotonic imbalance bounding. Journal of the American Statistical Association 106, 493 (2011 2011), 345–361. [3] Iacus, S. M., King, G., and Porro, G. Causal inference without balance checking: Coarsened exact matching. Political Analysis 20, 1 (2012), 1–24. [4] King, G., and Zeng, L. The dangers of extreme counterfactuals. Political Analysis 14 (2006), 131–159. [5] Ho, D., Imai, K., King, G., and Stuart, E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 15 (2007), 199–236.


نیازمندی

مقدار نام
- pandas
- numpy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cem-0.1.5:

    pip install cem-0.1.5.whl


نصب پکیج tar.gz cem-0.1.5:

    pip install cem-0.1.5.tar.gz