معرفی شرکت ها


cellvgae-0.0.1b4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CellVGAE uses the connectivity between cells (such as k-nearest neighbour graphs) with gene expression values as node features to learn high-quality cell representations in a lower-dimensional space
ویژگی مقدار
سیستم عامل -
نام فایل cellvgae-0.0.1b4
نام cellvgae
نسخه کتابخانه 0.0.1b4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده David Buterez
ایمیل نویسنده david.buterez@gmail.com
آدرس صفحه اصلی https://github.com/davidbuterez/CellVGAE
آدرس اینترنتی https://pypi.org/project/cellvgae/
مجوز MIT
# CellVGAE An unsupervised scRNA-seq analysis workflow with graph attention networks ![](figures/workflow.png) CellVGAE uses the connectivity between cells (such as *k*-nearest neighbour graphs or KNN) with gene expression values as node features to learn high-quality cell representations in a lower-dimensional space, with applications in downstream analyses like (density-based) clustering, visualisation, gene set enrichment analysis and others. CellVGAE leverages both the variational graph autoencoder and graph attention networks to offer a powerful and more interpretable machine learning approach. It is implemented in PyTorch using the PyTorch Geometric library. ## Requirements Installing CellVGAE with pip will attempt to install PyTorch and PyTorch Geometric, however it is recommended that the appropriate GPU/CPU versions are installed manually beforehand. For Linux: 1. Install PyTorch GPU: ```conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia``` or PyTorch CPU: ```conda install pytorch torchvision torchaudio cpuonly -c pytorch``` 2. Install PyTorch Geometric: `conda install pyg -c pyg -c conda-forge` 3. (Optional) Install Faiss CPU: `conda install -c pytorch faiss-cpu` Faiss is only required if using the option `--graph_type "KNN Faiss"` . It is a soft dependency as it is not available for some platforms (currently Apple M1). Attempting to use CellVGAE with Faiss without installing it will result in an exception. A GPU version of Faiss for CUDA 11.1 is not yet available. 4. Install CellVGAE with pip: `pip install cellvgae --pre` 5. (Optional) For the attention graph visualisations of Figure 6, `igraph` is required: `pip install python-igraph` If using the R preprocessing code, we recommend installing the following: `Seurat 3`, `scran`, `SingleCellExperiment`. `scRNAseq`, `BiocSingular`, `igraph`, `dplyr` and `textshape`. ## Example use Using the example files in this repo (.h5ad file is the same as downloaded by Scanpy 1.8.1): ```bash python -m cellvgae --input_gene_expression_path "example_data/paul15_myeloid_scanpy.h5ad" --graph_file_path "example_data/paul15_Faiss_KNN_K3_KHVG2500.txt" --graph_convolution "GAT" --num_hidden_layers 2 --hidden_dims 128 128 --num_heads 3 3 3 3 --dropout 0.4 0.4 0.4 0.4 --latent_dim 50 --epochs 50 --model_save_path "model_saved_out" ``` Other examples are available in `examples/cellvgae_example_scripts.txt` (also consult the help section below) ## Usage Invoke the training script with `python -m cellvgae` with the arguments detailed below: ``` usage: train [-h] [--input_gene_expression_path INPUT_GENE_EXPRESSION_PATH] [--hvg HVG] [--khvg KHVG] [--graph_type {KNN Scanpy,KNN Faiss,PKNN}] [--k K] [--graph_n_pcs GRAPH_N_PCS] [--graph_metric {euclidean,manhattan,cosine}] [--graph_distance_cutoff_num_stds GRAPH_DISTANCE_CUTOFF_NUM_STDS] [--save_graph] [--raw_counts] [--faiss_gpu] [--hvg_file_path HVG_FILE_PATH] [--khvg_file_path KHVG_FILE_PATH] [--graph_file_path GRAPH_FILE_PATH] [--graph_convolution {GAT,GATv2,GCN}] [--num_hidden_layers {2,3}] [--num_heads [NUM_HEADS [NUM_HEADS ...]]] [--hidden_dims [HIDDEN_DIMS [HIDDEN_DIMS ...]]] [--dropout [DROPOUT [DROPOUT ...]]] [--latent_dim LATENT_DIM] [--loss {kl,mmd}] [--lr LR] [--epochs EPOCHS] [--val_split VAL_SPLIT] [--test_split TEST_SPLIT] [--transpose_input] [--use_linear_decoder] [--decoder_nn_dim1 DECODER_NN_DIM1] [--name NAME] --model_save_path MODEL_SAVE_PATH [--umap] [--hdbscan] Train CellVGAE. optional arguments: -h, --help show this help message and exit --input_gene_expression_path INPUT_GENE_EXPRESSION_PATH Input gene expression file path. --hvg HVG Number of HVGs. --khvg KHVG Number of KHVGs. --graph_type {KNN Scanpy,KNN Faiss,PKNN} Type of graph. --k K K for KNN or Pearson (PKNN) graph. --graph_n_pcs GRAPH_N_PCS Use this many Principal Components for the KNN (only Scanpy). --graph_metric {euclidean,manhattan,cosine} --graph_distance_cutoff_num_stds GRAPH_DISTANCE_CUTOFF_NUM_STDS Number of standard deviations to add to the mean of distances/correlation values. Can be negative. --save_graph Save the generated graph to the output path specified by --model_save_path. --raw_counts Enable preprocessing recipe for raw counts. --faiss_gpu Use Faiss on the GPU (only for KNN Faiss). --hvg_file_path HVG_FILE_PATH HVG file if not using command line options to generate it. --khvg_file_path KHVG_FILE_PATH KHVG file if not using command line options to generate it. Can be the same file as --hvg_file_path if HVG = KHVG. --graph_file_path GRAPH_FILE_PATH Graph specified as an edge list (one edge per line, nodes separated by whitespace, not comma), if not using command line options to generate it. --graph_convolution {GAT,GATv2,GCN} --num_hidden_layers {2,3} Number of hidden layers (must be 2 or 3). --num_heads [NUM_HEADS [NUM_HEADS ...]] Number of attention heads for each layer. Input is a list that must match the total number of layers = num_hidden_layers + 2 in length. --hidden_dims [HIDDEN_DIMS [HIDDEN_DIMS ...]] Output dimension for each hidden layer. Input is a list that matches --num_hidden_layers in length. --dropout [DROPOUT [DROPOUT ...]] Dropout for each layer. Input is a list that must match the total number of layers = num_hidden_layers + 2 in length. --latent_dim LATENT_DIM Latent dimension (output dimension for node embeddings). --loss {kl,mmd} Loss function (KL or MMD). --lr LR Learning rate for Adam. --epochs EPOCHS Number of training epochs. --val_split VAL_SPLIT Validation split e.g. 0.1. --test_split TEST_SPLIT Test split e.g. 0.1. --transpose_input Specify if inputs should be transposed. --use_linear_decoder Turn on a neural network decoder, similar to traditional VAEs. --decoder_nn_dim1 DECODER_NN_DIM1 First hidden dimenson for the neural network decoder, if specified using --use_linear_decoder. --name NAME Name used for the written output files. --model_save_path MODEL_SAVE_PATH Path to save PyTorch model and output files. Will create the entire path if necessary. --umap Compute and save the 2D UMAP embeddings of the output node features. --hdbscan Compute and save different HDBSCAN clusterings. ```


نیازمندی

مقدار نام
>=1.6.0 torch
>=0.5.1 umap-learn
>=0.8.27 hdbscan
>=0.11.1 seaborn
>=3.3.4 matplotlib
>=1.7.2 scanpy
>=0.7.5 anndata
>=4.61.2 tqdm
>=1.1.0 termcolor
>=1.19.5 numpy
>=1.2.4 pandas
>=1.7.0 torch-geometric
>=0.24.2 scikit-learn
>=0.6.12 torch-sparse
>=2.0.8 torch-scatter


نحوه نصب


نصب پکیج whl cellvgae-0.0.1b4:

    pip install cellvgae-0.0.1b4.whl


نصب پکیج tar.gz cellvgae-0.0.1b4:

    pip install cellvgae-0.0.1b4.tar.gz