معرفی شرکت ها


cellex-1.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Compute single-cell cell-type expression specificity
ویژگی مقدار
سیستم عامل -
نام فایل cellex-1.2.2
نام cellex
نسخه کتابخانه 1.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tobias O. Stannius
ایمیل نویسنده stannius@sund.ku.dk
آدرس صفحه اصلی https://github.com/perslab/CELLEX
آدرس اینترنتی https://pypi.org/project/cellex/
مجوز -
[![PyPI version shields.io](https://img.shields.io/pypi/v/cellex.svg)](https://pypi.python.org/pypi/cellex/) # CELLEX CELLEX (CELL-type EXpression-specificity) is a tool for computing cell-type Expression Specificity (ES) profiles. It employs a "wisdom of the crowd"-approach by integrating multiple ES metrics, thus combining complementary cell-type ES profiles, to capture multiple aspects of ES and obtain improved robustness. ![CELLEX_overview](https://user-images.githubusercontent.com/5487016/72679348-9662cf80-3aae-11ea-9d07-c4cea1daec5f.png) # Contents - [Documentation](https://github.com/perslab/CELLEX#documentation) - [Quick Start](https://github.com/perslab/CELLEX#quick-start) - [Tutorials](https://github.com/perslab/CELLEX#tutorials) - [Contact and References](https://github.com/perslab/CELLEX#about) # Documentation The documentation for CELLEX can be accessed in the following ways: - **[CELLEX Wiki](https://github.com/perslab/CELLEX/wiki)** : main documentation on the usage of CELLEX - **[CELLEX API docs](https://perslab.github.io/CELLEX/)**: documentation of CELLEX API/functions - [**Publication**](https://elifesciences.org/articles/55851): technical details on the CELLEX method. _Genetic mapping of etiologic brain cell types for obesity_ ([Timshel eLife, 2020](https://elifesciences.org/articles/55851), Appendix) We are continually updating the documentation for CELLEX. If some information is missing, please submit your request or question via our [issue tracker](https://github.com/perslab/CELLECT/issues). # Quick start This brief tutorial showcases the core features of CELLEX. ## TL;DR ```python import numpy as np import pandas as pd import cellex data = pd.read_csv("./data.csv", index_col=0) metadata = pd.read_csv("./metadata.csv", index_col=0) eso = cellex.ESObject(data=data, annotation=metadata, verbose=True) eso.compute(verbose=True) eso.results["esmu"].to_csv("mydataset.esmu.csv.gz") ``` ## Walkthrough ### Setup #### Option A: Install the latest release from PyPi ``` pip install cellex ``` #### Option B: Install the development version from this repo Clone the development repo and install from source using `pip`. The development version may contain bug fixes that have not been released, as well as experimental features. ``` git clone https://github.com/perslab/CELLEX.git --branch develop --single-branch cd CELLEX pip install -e . ``` ### Import modules ```python import numpy as np # needed for formatting data for this tutorial import pandas as pd # needed for formatting data for this tutorial import cellex ``` ### Load input data and metadata ```python data = pd.read_csv("./data.csv", index_col=0) metadata = pd.read_csv("./metadata.csv", index_col=0) ``` #### Data format Data may consist of UMI counts (integer) for each **gene** and **cell**. | | cell_1 | ... | cell_9 | |---------------|-----------------------|-----|------------------------| | gene_x | 0 | ... | 4 | | ... | ... | ... | ... | | gene_z | 3 | ... | 1 | Shape: *m* genes by *n* cells. #### Metadata format Metadata should consist of *unique* cell id's and matching annotation (string). | cell_id | cell_type | |------------------------|-----------| | cell_1 | type_A | | ... | ... | | cell_9 | type_C | Shape: *n* cells by 2. ### Create ESObject and compute ESmu ```python eso = cellex.ESObject(data=data, annotation=metadata, verbose=True) eso.compute(verbose=True) ``` ### View Expression Specificity scores All results are accessible via the `results` attribute of the `ESObject`. ```python eso.results["esmu"] ``` ### Save result(s) #### Pro-tip: Using CELLEX with CELLECT The ESmu scores may be used with **[CELLECT](https://github.com/perslab/CELLECT)**. CELLECT requires that genes are in the *Human Ensembl Gene ID* format. CELLEX provides a simple renaming utility for this purpose: ```python cellex.utils.mapping.mouse_ens_to_human_ens(eso.results["esmu"], drop_unmapped=True, verbose=True) ``` #### Save ESmu ```python eso.results["esmu"].to_csv("mydataset.esmu.csv.gz") ``` #### Save all or specific results ```python eso.save_as_csv(keys=["all"], verbose=True) ``` #### Output format Output consist of Expression Specificity Weights (float) for each **gene** and **cell-type**. ESmu values lie in the range [0,1]. | | type_A | ... | type_C | |---------------|-----------------------|-----|------------------------| | gene_x | 0.0 | ... | 0.9 | | ... | ... | ... | ... | | gene_z | 0.1 | ... | 0.2 | Shape: *m* genes by *x* unique annotations. N.B. a number of genes may be removed during preprocessing. # Tutorials Various tutorials and walkthroughs will be made available here, while the Wiki is in the making. These Jupyter Notebooks cover everything from downloading CELLEX and data to analysis and plotting. * [Demo: Downloading and running CELLEX with sample Mousebrain Atlas data](tutorials/demo_mousebrain_vascular_cells.ipynb) * [Demo: Downloading and running CELLEX with sample MOCA data](tutorials/demo_moca_100k.ipynb) # About ## Developers - Tobias Overlund Stannius (University of Copenhagen) [@TobiasStannius](https://twitter.com/TobiasStannius) - Pascal Nordgren Timshel (University of Copenhagen) [@ptimshel](https://twitter.com/ptimshel) ## Contact Please create an [issue](https://github.com/perslab/CELLECT/issues) in this repo, if you encounter any problems using CELLEX. Alternatively, you may write an email to timshel(at)sund.ku.dk ## References If you find CELLEX useful for your research, please consider citing: **[Timshel (eLife, 2020): _Genetic mapping of etiologic brain cell types for obesity_](https://elifesciences.org/articles/55851)**


نیازمندی

مقدار نام
>=41.2.0 setuptools
>=3.3.3 setuptools-scm
>=1.17.0 numpy
>=1.3.1 scipy
>=1.0.3 pandas
>=2.9.0 h5py
>=3.0.6 loompy
>=0.7.3 adjustText
>=0.6.0 plotnine


نحوه نصب


نصب پکیج whl cellex-1.2.2:

    pip install cellex-1.2.2.whl


نصب پکیج tar.gz cellex-1.2.2:

    pip install cellex-1.2.2.tar.gz