معرفی شرکت ها


celery-message-consumer-1.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tool for using the bin/celery worker to consume vanilla AMQP messages (i.e. not Celery tasks)
ویژگی مقدار
سیستم عامل -
نام فایل celery-message-consumer-1.2.1
نام celery-message-consumer
نسخه کتابخانه 1.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Depop
ایمیل نویسنده dev@depop.com
آدرس صفحه اصلی https://github.com/depop/celery-message-consumer
آدرس اینترنتی https://pypi.org/project/celery-message-consumer/
مجوز Apache 2.0
celery-message-consumer ======================= |PyPI Version| |Build Status| .. |PyPI Version| image:: http://img.shields.io/pypi/v/celery-message-consumer.svg?style=flat :target: https://pypi.python.org/pypi/celery-message-consumer/ :alt: Latest PyPI version .. |Build Status| image:: https://circleci.com/gh/depop/celery-message-consumer.svg?style=shield&circle-token=a9ea2909c5cbc4cb32a87f50444ca79b99e3b09c :alt: Build Status Tool for using the ``bin/celery`` worker to consume vanilla AMQP messages (i.e. not Celery tasks) While `writing a simple consumer script <https://medium.com/python-pandemonium/building-robust-rabbitmq-consumers-with-python-and-kombu-part-1-ccd660d17271>`__ using Kombu can be quite easy, the Celery worker provides many features around process pools, queue/routing connections etc as well as being known to run reliably over long term. It seems safer to re-use this battle-tested consumer than try to write our own and have to learn from scratch all the ways that such a thing can fail. Usage ----- .. code:: bash pip install celery-message-consumer Handlers ~~~~~~~~ In your code, you can define a message handler by decorating a python function, in much the same way as you would a Celery task: .. code:: python from event_consumer import message_handler @message_handler('my.routing.key') def process_message(body): # `body` has been deserialized for us by the Celery worker print(body) @message_handler(['my.routing.key1', 'my.routing.key2']) def process_messages(body): # you can register handler for multiple routing keys @message_handler('my.routing.*') def process_all_messages(body): # or wildcard routing keys, if using a 'topic' exchange Like a Celery task, the module it is defined in must actually get imported at some point for the handler to be registered. A queue (in fact, three queues - see below) will be created to receive messages matching the routing key. Celery ~~~~~~ Elsewhere in your code you will need to instantiate a Celery app and apply our custom 'ConsumerStep' which hooks our message handlers into the worker. If you are already using Celery *as Celery* in your project then you probably want separate Celery apps for tasks and for the message consumer. .. code:: python from celery import Celery from event_consumer.handlers import AMQPRetryConsumerStep main_app = Celery() consumer_app = Celery() consumer_app.steps['consumer'].add(AMQPRetryConsumerStep) You likely will want separate config for each app. See `Celery docs <http://docs.celeryproject.org/en/latest/userguide/application.html#configuration>`__. In the config for your message consumer app, add the modules containing your decorated message handler functions to ``CELERY_IMPORTS``, exactly as you would for Celery tasks - this ensures they get imported and registered when the worker starts up. Then from the command-line, run the Celery worker just like you usually would, attaching to the consumer app: .. code:: bash bin/celery worker -A myproject.mymodule:consumer_app Configuration ~~~~~~~~~~~~~ Settings are intended to be configured primarily via a python file, such as your existing Django ``settings.py`` or Celery ``celeryconfig.py``. To bootstrap this, there are a couple of env vars to control how config is loaded: - ``EVENT_CONSUMER_APP_CONFIG`` should be an import path to a python module, for example: ``EVENT_CONSUMER_APP_CONFIG=django.conf.settings`` - ``EVENT_CONSUMER_CONFIG_NAMESPACE`` Sets the prefix used for loading further config values from env and config file. Defaults to ``EVENT_CONSUMER``. See source of ``event_consumer/conf/`` for more details. Some useful config keys (all of which are prefixed with ``EVENT_CONSUMER_`` by default): - ``SERIALIZER`` this is the name of a Celery serializer name, e.g. ``'json'``. The consumer will only accept messages serialized in this format. - ``QUEUE_NAME_PREFIX`` if using default queue name (routing-key) then this prefix will be added to the queue name. If you supply a custom queue name in the handler decorator the prefix will not be applied. - ``MAX_RETRIES`` defaults to ``4`` (i.e. 1 attempt + 4 retries = 5 strikes) - ``BACKOFF_FUNC`` takes a function ``(int) -> float`` which returns the retry delay (in seconds) based on current retry counter for the message. - ``ARCHIVE_EXPIRY`` time in milliseconds to keep messages in the "archive" queue, after which the exchange will delete them. Defaults to 24 days. - ``USE_DJANGO`` set to ``True`` if your message handler uses the Django db connection, so that the worker is able to cope with the dreaded *"current transaction is aborted"* error and continue. - ``EXCHANGES`` if you need your message handlers to connect their queues to specific exchanges then you can provide a dict like: .. code:: python EXCHANGES = { # a reference name for this config, used when attaching handlers 'default': { 'name': 'data', # actual name of exchange in RabbitMQ 'type': 'topic', # an AMQP exchange type }, 'other': { ... }, ... } The ``'default'`` config will be used... by default. You can attach handler to a specific exchange when decorating: .. code:: python @message_handler('my.routing.key', exchange='other') def process_message(body): pass Queue layout ------------ While all of the broker, exchange and queue naming is configurable (see source code) this project implements a *very specific queue pattern*. Briefly: for each routing key it listens to, the consumer sets up *three* queues and a 'dead-letter exchange' (DLX). #. The "main" message queue #. If any unhandled exceptions occur, and we have retried less than ``settings.MAX_RETRIES``, the message will be put on the "retry" queue with a TTL. After the TTL expires, the DLX will put the message back on the main queue. #. If all retries are exhausted (or ``PermanentFailure`` is raised) then the consumer will put the message on the "archive" queue. This gives opportunity for someone to manually retry the archived messages, perhaps after a code fix has been deployed. | You will of course note that this is *totally different and separate* from Celery's own ``task.retry`` mechanism. | **Pros:** matches pattern we were already using for non-Celery, non-Python apps, "archive" queue provides an extra safety net. | **Cons:** Relies on RabbitMQ-specific feature, more queues (more complicated). Compatibility ------------- Python 2.7 and 3.6-3.8 are both supported. **Only** RabbitMQ transport is supported. We depend on Celery and Kombu. Their versioning seems to be loosely in step so that Celery 3.x goes with Kombu 3.x and Celery 4.x goes with Kombu 4.x. We test against both v3 and v4. Django is not required, but when used we have some extra integration which is needed if your event handlers use the Django db connection. This must be enabled if required via the ``settings.USE_DJANGO`` flag. This project is tested against: =========== ============ ============= ================== ================== x Django 1.11 Django 2.2 Celery/Kombu 3.x Celery/Kombu 4.x =========== ============ ============= ================== ================== Python 2.7 * * * Python 3.6 * * * * Python 3.7 * * * Python 3.8 * * * =========== ============ ============= ================== ================== Running the tests ----------------- CircleCI ~~~~~~~~ | The easiest way to test the full version matrix is to install the CircleCI command line app: | https://circleci.com/docs/2.0/local-jobs/ | (requires Docker) The cli does not support 'workflows' at the moment so you have to run the two Python version jobs separately: .. code:: bash circleci build --job python-2.7 .. code:: bash circleci build --job python-3.6 py.test (single combination of dependency versions) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's also possible to run the tests locally, allowing for debugging of errors that occur. We rely on some RabbitMQ features for our retry queues so we need a rabbit instance to test against. A ``docker-compose.yml`` file is provided. .. code:: bash docker-compose up -d export BROKER_HOST=$(docker-machine ip default) (adjust the last line to suit your local Docker installation) The ``rabbitmqadmin`` web UI is available to aid in debugging queue issues: .. code:: bash http://{BROKER_HOST}:15672/ Now decide which version combination from the matrix you're going to test and set up your virtualenv accordingly: .. code:: bash pyenv virtualenv 3.6.2 celery-message-consumer You will need to edit ``requirements.txt`` and ``requirements-test.txt`` for the specific versions of dependencies you want to test against. Then you can install everything via: .. code:: bash pip install -r requirements-test.txt Set an env to point to the target Django version's settings in the test app (for Django-dependent tests) and for general app settings: .. code:: bash export DJANGO_SETTINGS_MODULE=test_app.dj111.settings export EVENT_CONSUMER_APP_CONFIG=test_app.settings Now we can run the tests: .. code:: bash PYTHONPATH=. py.test -v -s --pdb tests/ tox (all version combinations for current Python) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You'll notice in the CircleCI config we run tests against the matrix dependency versions using ``tox``. There are `some warts <https://github.com/pyenv/pyenv-virtualenv/issues/202#issuecomment-339624649>`__ around using ``tox`` with ``pyenv-virtualenv`` so if you created a Python 3.6 virtualenv using the instructions above the best thing to do is delete it and recreate it like this: .. code:: bash pyenv virtualenv -p python3.6 myenv pip install tox (it's actually easier not to use a virtualenv at all - tox creates its own virtualenvs anyway, but that does mean you'd have to install tox globally) You need the Docker container running: .. code:: bash docker-compose up -d export BROKER_HOST=$(docker-machine ip default) You can now run tests for any versions compatible with your virtualenv python version, e.g. .. code:: bash tox -e py36-dj111-cel4 To run the full version matrix you need to have both Python 2.7 and 3.6. The easiest way is via ``pyenv``. You will also need to make both Python versions 'global' (or 'local') via pyenv, and then install and run ``tox`` outside of any virtualenv. .. code:: bash source deactivate pyenv global 2.7.14 3.6.2 pip install tox tox


نحوه نصب


نصب پکیج whl celery-message-consumer-1.2.1:

    pip install celery-message-consumer-1.2.1.whl


نصب پکیج tar.gz celery-message-consumer-1.2.1:

    pip install celery-message-consumer-1.2.1.tar.gz