معرفی شرکت ها


celeb-detector-0.0.24


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Model to recognize celebrities using a face matching algorithm
ویژگی مقدار
سیستم عامل -
نام فایل celeb-detector-0.0.24
نام celeb-detector
نسخه کتابخانه 0.0.24
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Shobhit Gupta
ایمیل نویسنده shobhit9618@gmail.com
آدرس صفحه اصلی https://github.com/shobhit9618/celeb_recognition
آدرس اینترنتی https://pypi.org/project/celeb-detector/
مجوز -
# Celebrity Recognition [![PyPI version](https://badge.fury.io/py/celeb-detector.svg)](https://badge.fury.io/py/celeb-detector) [![Documentation Status](https://readthedocs.org/projects/celeb-recognition/badge/?version=main)](https://celeb-recognition.readthedocs.io/en/main/) [![Anaconda-Server Badge](https://anaconda.org/shobhit9618/celeb-detector/badges/installer/env.svg)](https://anaconda.org/shobhit9618/celeb-detector) Model to recognize celebrities using a face matching algorithm. Refer [this](https://celeb-recognition.readthedocs.io/en/main/) for detailed documentation. You can also read my article on medium [here](https://medium.com/@shobhitgupta/celebrity-recognition-using-vggface-and-annoy-363c5df31f1e). ## Basic working of the algorithm includes the following: - Face detection is done using MTCNN face detection model. - Face encodings are created using [VGGFace](https://github.com/rcmalli/keras-vggface) model in keras. - Face matching is done using [annoy](https://github.com/spotify/annoy) library (spotify). ## Installing dependencies - Run `pip install -r requirements.txt` to install all the dependencies (preferably in a virtual environment). ## PyPI package ### Installation - To ensure you have all the required additional packages, run `pip install -r requirements.txt` first. - To install pip package, run: ```bash # pip release version pip install celeb-detector # also install additional dependencies with this (if not installed via requirements.txt file) pip install annoy keras-vggface keras-applications # Directly from repo pip install git+https://github.com/shobhit9618/celeb_recognition.git ``` - If you are using conda on linux or ubuntu, you can use the following commands to create and use a new environment called celeb-detector: ```bash conda env create shobhit9618/celeb-detector conda activate celeb-detector ``` This will install all the required dependencies. To ensure you are using the latest version of the package, also run (inside the environment): ```bash pip install --upgrade celeb-detector ``` ### Using pip pakcage - For using my model for predictions, use the following lines of code after installation: ```python import celeb_detector # on running for the first time, this will download vggface model img_path = 'sample_image.jpg' # this supports both local path and web url like https://sample/sample_image_url.jpg celeb_detector.celeb_recognition(img_path) # on running for the first time, 2 files (celeb_mapping.json and celeb_index_60.ann) will downloaded to your home directory ``` This returns a list of dictionaries, each dictionary contains bbox coordinates, celeb name and confidence for each face detected in the image (celeb name will be unknown if no matching face detected). - For using your own custom model, also provide path to json and ann files as shown below: ```python import celeb_detector img_path = 'sample_image.jpg' ann_path = 'sample_index.ann' celeb_map = 'sample_mapping.json' celeb_detector.celeb_recognition(img_path, ann_path, celeb_map) ``` - For creating your own model (refer [this](#create-your-own-celeb-model) for more details on usage) and run as follows: ```python import celeb_detector folder_path = 'celeb_images' celeb_detector.create_celeb_model(folder_path) ``` ## Create your own celeb model - Create a dataset of celebs in the following directory structure: ```bash celeb_images/ celeb-a/ celeb-a_1.jpg celeb-a_2.jpg ... celeb-b/ celeb-b_1.jpg celeb-b_1.jpg ... ... ``` - Each folder name will be considered as the corresponding celeb name for the model (WARNING: Do not provide any special characters or spaces in the names). - Make sure each image has only 1 face (of the desired celebrity), if there are multiple faces, only the first detected face will be considered. - Provide path to the dataset folder (for example, `celeb_images` folder) in the [create_celeb_model.py](create_celeb_model.py) file. - Run [create_celeb_model.py](create_celeb_model.py) file. - Upon successful completion of the code, we get `celeb_mapping.json` (for storing indexes vs celeb names), `celeb_index.ann` (ann file for searching encodings) and `celeb_name_encoding.pkl` files (for storing encodings vs indexes for each celeb). (WARNING: You need to provide paths for storing each of these files, default is to store in the current directory) ## Model predictions in jupyter - Provide paths to `celeb_mapping.json` and `celeb_index.ann` files in [celeb_recognition.ipynb](celeb_recognition.ipynb) file. If you want to try my model, ignore this step. - Run all the cells in the [celeb_recognition.ipynb](celeb_recognition.ipynb) file, the final cell will provide widgets for uploading images and making predictions (this will also download the necessary model files). - NOTE: [celeb_recognition.ipynb](celeb_recognition.ipynb) is a standalone file and does not require any other files from the repo for running. ## Model predictions in python - Provide paths to `celeb_mapping.json` and `celeb_index.ann` files in [celeb_recognition.py](celeb_recognition.py) and [celeb_utils.py](celeb_utils/celeb_utils.py) files. If you want to try my model, ignore this step. - Run [celeb_recognition.py](celeb_recognition.py) file, provide path to image in the file. - Output includes a list of the identified faces, bounding boxes and the predicted celeb name (unknown if not found). - It also displays the output with bounding boxes. ## Sample image output ![Image](https://drive.google.com/uc?export=view&id=1W4P0PPLjr0BHDkj2CzLgFGpOYn4MF1Ck) ## Binder You can run a binder application by clicking the following link: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/shobhit9618/celeb_recognition/main) You can also launch a voila binder application (which only has widgets for image upload and celeb prediction) by clicking [here](https://mybinder.org/v2/gh/shobhit9618/celeb_recognition/main?urlpath=%2Fvoila%2Frender%2Fceleb_recognition.ipynb). ## Google Colab To open and run [celeb_recognition.ipynb](celeb_recognition.ipynb) file in google colab, click the following link: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/shobhit9618/celeb_recognition/blob/main/celeb_recognition.ipynb)


نیازمندی

مقدار نام
- tensorflow
- mtcnn
>=2.4.3 keras
- imutils
>=4.0 opencv-python
- matplotlib
- numpy
- tqdm


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl celeb-detector-0.0.24:

    pip install celeb-detector-0.0.24.whl


نصب پکیج tar.gz celeb-detector-0.0.24:

    pip install celeb-detector-0.0.24.tar.gz