معرفی شرکت ها


cdb-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

container database (cdb) metadata generation tool.
ویژگی مقدار
سیستم عامل -
نام فایل cdb-0.0.1
نام cdb
نسخه کتابخانه 0.0.1
نگهدارنده ['Vanessa Sochat']
ایمیل نگهدارنده ['vsochat@stanford.edu']
نویسنده Vanessa Sochat
ایمیل نویسنده vsochat@stanford.edu
آدرس صفحه اصلی https://github.com/vsoch/cdb
آدرس اینترنتی https://pypi.org/project/cdb/
مجوز LICENSE
# Container Database (cdb) This is the Python support tool for [containerdb](https://github.com/vsoch/containerdb) to support generation of [data containers](https://github.com/singularityhub/data-container). Python is more friendly to generating arbitrary data structures, and is popular among the data science community, so I chose it for metadata generation instead of using GoLang. [![PyPI version](https://badge.fury.io/py/cdb.svg)](https://badge.fury.io/py/cdb) > Have your data and use it too! ![assets/img/logo/logo.png](assets/img/logo/logo.png) For documentation and full examples see [vsoch.github.io/cdb](https://vsoch.github.io/cdb). These examples are also available in the [examples](examples) folder. ## Getting Started ### What is a Data Container? A data container is generally an operating-system-less container that is optimized to provide data, either for query/search, or binding for analysis. The qualities of the data container should be: 1. It can be mounted to containers with operating systems to run analysis 2. It can be interacted with on it's own to search metadata about the data 3. It should not have an operating system. ### How do we generate one? The generation is fairly simple! It comes down to a three step multistage build: 1. **Step 1** We install [cdb](https://github.com/vsoch/cdb) to generate a GoLang template for an [in-memory database](https://github.com/vsoch/containerdb) for our data) 2. **Step 2** We compile the binary into an entrypoint 3. **Step 3** We add the data and the binary entrypoint to a scratch container (no operating system). And then we interact with it! This tutorial will show you the basic steps to perform the multistage-build using a simple [Dockerfile](https://github.com/vsoch/cdb/tree/master/examples/docker-simple/Dockerfile) along with the data folder. The [Dockerfile](Dockerfile) in the base of the repository also is a good example. ## Usage ### Docker Usage The intended usage is via Docker, so you don't need to worry about installation of Python, GoLang, and multistage builds to basically: 1. Generate a db.go template 2. Compile it 3. Add to scratch with data as data container entrypoint. Thus, to run the dummy example here using the [Dockerfile](Dockerfile): ```bash $ docker build -t data-container . ``` We then have a simple way to do the following: **metadata** If we just run the container, we get a listing of all metadata alongside the key. ```bash $ docker run entrypoint /data/avocado.txt {"size": 9, "sha256": "327bf8231c9572ecdfdc53473319699e7b8e6a98adf0f383ff6be5b46094aba4"} /data/tomato.txt {"size": 8, "sha256": "3b7721618a86990a3a90f9fa5744d15812954fba6bb21ebf5b5b66ad78cf5816"} ``` **list** We can also just list data files with `-ls` ```bash $ docker run entrypoint -ls /data/avocado.txt /data/tomato.txt ``` **orderby** Or we can list ordered by one of the metadata items: ```bash $ docker run entrypoint -metric size Order by size /data/tomato.txt: {"size": 8, "sha256": "3b7721618a86990a3a90f9fa5744d15812954fba6bb21ebf5b5b66ad78cf5816"} /data/avocado.txt: {"size": 9, "sha256": "327bf8231c9572ecdfdc53473319699e7b8e6a98adf0f383ff6be5b46094aba4"} ``` **search** Or search for a specific metric based on value. ```bash $ docker run entrypoint -metric size -search 8 /data/tomato.txt 8 $ docker run entrypoint -metric sha256 -search 8 /data/avocado.txt 327bf8231c9572ecdfdc53473319699e7b8e6a98adf0f383ff6be5b46094aba4 /data/tomato.txt 3b7721618a86990a3a90f9fa5744d15812954fba6bb21ebf5b5b66ad78cf5816 ``` **get** Or we can get a particular file metadata by it's name: ```bash $ docker run entrypoint -get /data/avocado.txt /data/avocado.txt {"size": 9, "sha256": "327bf8231c9572ecdfdc53473319699e7b8e6a98adf0f383ff6be5b46094aba4"} ``` or a partial match: ```bash $ docker run entrypoint -get /data/ /data/avocado.txt {"size": 9, "sha256": "327bf8231c9572ecdfdc53473319699e7b8e6a98adf0f383ff6be5b46094aba4"} /data/tomato.txt {"size": 8, "sha256": "3b7721618a86990a3a90f9fa5744d15812954fba6bb21ebf5b5b66ad78cf5816"} ``` **start** The start command is intended to keep the container running, if we are using it with an orchestrator. ```bash $ docker run data-container -start ``` ### Orchestration It's more likely that you'll want to interact with files in the container via some analysis, or more generally, another container. Let's put together a quick `docker-compose.yml` to do exactly that. ``` version: "3" services: base: restart: always image: busybox entrypoint: ["tail", "-f", "/dev/null"] volumes: - data-volume:/data data: restart: always image: data-container command: ["-start"] volumes: - data-volume:/data volumes: data-volume: ``` Notice that the command for the data-container to start is `-start`, which is important to keep it running. After building our `data-container`, we can then bring these containers up: ```bash $ docker-compose up -d Starting docker-simple_base_1 ... done Recreating docker-simple_data_1 ... done ``` ```bash $ docker-compose ps Name Command State Ports --------------------------------------------------------- docker-simple_base_1 tail -f /dev/null Up docker-simple_data_1 /entrypoint -start Up ``` We can then shell inside and see our data! ```bash $ docker exec -it docker-simple_base_1 sh / # ls /data/ avocado.txt tomato.txt ``` The metadata is still available for query by interacting with the data-container entrypoint: ```bash $ docker exec docker-simple_data_1 /entrypoint -ls /data/avocado.txt /data/tomato.txt ``` Depending on your use case, you could easily make this available inside the other container. This is very simple usage, but the idea is powerful! We can interact with the dataset and search it without needing an operating system. It follows that we can develop customized data-containers based on the format / organization of the data inside (e.g., a data-container that knows how to expose inputs, outputs, etc.) ## Python Usage The above doesn't require you to install the Container Database (cdb) metadata generator, however if you want to (to develop or otherwise interact) you can do the following. First, install cdb from pypi or a local repository: ```bash $ pip install cdb ``` or ```bash git clone git@github.com:vsoch/cdb cd cdb pip install -e . ``` ### Command Line The next step is to generate the goLang file to compile. You'll next want to change directory to somewhere you have a dataset folder. For example, in [tests](tests) we have a dummy "data" folder. ```bash cd tests/ ``` We might then run `cdb generate` to create a binary for our container, targeting the [tests/data](tests/data) folder: ```bash $ cdb generate data --out db.go ``` The db.go file is then in the present working directory. You can either build it during a multistage build as is done in the [Dockerfile](Dockerfile), or do it locally with your own GoLang install and then add to the container. For example, to compile: ```bash go get github.com/vsoch/containerdb && \ GOOS=linux GOARCH=amd64 go build -ldflags="-w -s" -o /db -i /db.go ``` And then a very basic Dockerfile would need to add the data at the path specified, and the compiled entrypoint. ```bash FROM scratch WORKDIR /data COPY data/ . COPY db /db CMD ["/db"] ``` A more useful entrypoint will be developed soon! This is just a very basic start to the library. ### Python You can run the same generation functions interactively with Python. ```python from cdb.main import ContainerDatabase db = ContainerDatabase(path="data") # <cdb.main.ContainerDatabase at 0x7fcaa9cb8950> ``` View that there is a files generator at `db.files` ```python db.files <generator object recursive_find at 0x7fcaaa4ae950> ``` And then generate! If you don't provide an output file, a string will be returned. Otherwise, the output file name is returned. ```python output = db.generate(output="db.go", force=True) ``` Currently, functions for parsing metadata are named in [cdb/functions.py](cdb/functions.py), however you can also define a custom import path. This has not yet been tested and will be soon. We will also be added more real world examples soon. ## License * Free software: MPL 2.0 License


نحوه نصب


نصب پکیج whl cdb-0.0.1:

    pip install cdb-0.0.1.whl


نصب پکیج tar.gz cdb-0.0.1:

    pip install cdb-0.0.1.tar.gz