معرفی شرکت ها


ccAF-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Classify scRNA-seq profiling with highly resolved cell cycle phases.
ویژگی مقدار
سیستم عامل -
نام فایل ccAF-1.0.1
نام ccAF
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Christopher Plaisier
ایمیل نویسنده plaisier@asu.edu
آدرس صفحه اصلی https://github.com/plaisier-lab/ccAF
آدرس اینترنتی https://pypi.org/project/ccAF/
مجوز GNU General Public License v3.0
# ccAF: cell cycle ASU-Fred Hutch neural network based scRNA-seq cell cycle classifier The ability to accurately assign a cell cycle phase based on a transcriptome profile has many potential uses in single cell studies and beyond. We have developed a cell cycle classifier based on a scRNA-seq optimized Neural Network (NN) based machine learning algorithm [ACTINN](https://pubmed.ncbi.nlm.nih.gov/31359028/). The ACTINN code was adapted from: [https://github.com/mafeiyang/ACTINN](https://github.com/mafeiyang/ACTINN) ## Dependencies There are four dependencies that must be met for ccAF to classify cell cycle states: 1. [numpy](https://numpy.org/) - ([install](https://numpy.org/install/)) 2. [scipy](https://www.scipy.org/index.html) - ([install](https://www.scipy.org/install.html)) 3. [scanpy](https://scanpy.readthedocs.io/en/latest/) - ([install](https://scanpy.readthedocs.io/en/latest/installation.html)) 3. [tensorflow](https://www.tensorflow.org/) - ([install](https://www.tensorflow.org/install)) *Python dependency installation commands:* > **NOTE!** pip may need to be replaced with pip3 depending upon your setup. ```shell pip3 install numpy scipy scanpy tensorflow ``` ## Installation of ccAF classifier The ccAF classifier can be installed with the following command: ```shell pip install ccAF ``` ## Alternatively use the ccAF Docker container We facilitate the use of ccAF by providing a Docker Hub container [cplaisier/ccAF](https://hub.docker.com/r/cplaisier/ccaf) which has all the dependencies and libraries required to run the ccAF classifier. To see how the Docker container is configured please refer to the [Dockerfile](https://github.com/plaisier-lab/docker_ccAF/blob/master/Dockerfile). Please [install Docker](https://docs.docker.com/get-docker/) and then from the command line run: ```shell docker pull cplaisier/ccaf ``` Then run the Docker container using the following command (replace <path to scRNA-seq profiles directory> with the directory where you have the scRNA-seq data to be classified): ```shell docker run -it -v '<path to scRNA-seq profiles directory>:/files' cplaisier/ccaf ``` This will start the Docker container in interactive mode and will leave you at a command prompt. You will then want to change directory to where you have your scRNA-seq or transcriptome profiling data. ## Running ccAF against your scRNA-seq data The first step in using ccAF is to import your scRNA-seq profiling data into scanpy. A scanpy data object is the expected input into the ccAF classifier: ```python import scanpy import ccAF # Load WT U5 hNSC data used to train classifier as a loom file set1_scanpy = sc.read_loom('data/WT.loom') # Predict cell cycle phase labels predictedLabels = ccAF.predict_labels(set1_scanpy) ``` More complete example is available as [test.py](https://github.com/plaisier-lab/ccAF/blob/master/tests/test.py) on the GitHub page. ## Contact For issues or comments please contact: [Chris Plaisier](mailto:plaisier@asu.edu) ## Citation [Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma.](https://doi.org/10.1101/446344) Samantha A. O'Connor, Heather M. Feldman, Chad M. Toledo, Sonali Arora, Pia Hoellerbauer, Philip Corrin, Lucas Carter, Megan Kufeld, Hamid Bolouri, Ryan Basom, Jeffrey Delrow, Jose L. McFaline-Figueroa, Cole Trapnell, Steven M. Pollard, Anoop Patel, Patrick J. Paddison, Christopher L. Plaisier. bioRxiv 446344; doi: [https://doi.org/10.1101/446344](https://doi.org/10.1101/446344)


نیازمندی

مقدار نام
- numpy
- scipy
- pandas
- tensorflow


نحوه نصب


نصب پکیج whl ccAF-1.0.1:

    pip install ccAF-1.0.1.whl


نصب پکیج tar.gz ccAF-1.0.1:

    pip install ccAF-1.0.1.tar.gz